Goddard
Space
Flight
Center

ILRS Pilot Project -- Part 8

JCET/GSFC Benchmark Report

Erricos C. Pavlis
Van Husson (NOT on record!)

Nice, France
April 22-23, 2004

PP7 Components

- S/W Benchmark Contributions PRIOR to LAST:
- Data set for analysis:
- 1999/10/10-11/07, 28-day arc of L-1 \& L-2 pre-screened data
- Solutions:
- A: ECF Orbit, Obs. Corrections and Residuals at prescribed initial conditions
- B: ECF Orbit, Obs. Corrections and Residuals after iterated initial state adjustment (6 elements and Constant Along-track Emp. Accel.)
- C: ECF Orbit, Obs. Corrections, Residuals and SINEX file after iterated initial state, POS+EOP adjustmentC: ECF Orbit, Obs.
- D: ECF Orbit, Obs. Corrections, Residuals and SINEX file after iterated initial state, POS+EOP adjustment

S/W Benchmark

- Solutions follow the prescribed rules
- Corrections reported in ONE (*.res) file along with the residuals
- Tropospheric corrections reported as "dry" and "wet" components (Marini-Murray)
- EOP and nutation/precession corrections to IAU 1980 model from IERS C 04 (daily)

New (12/2003) S/W Benchmark

- Software Benchmarking Pilot Project
- Last Revised: November 5, 2003

Based on our 2003 Analysis Working Group meeting in Koetzting, the benchmark plan has been revised again. We will call this new plan Phase IV. Hopefully the last phase.
0. A new submission has been adapted, case " 0 " (zero), which is similar to \mathbf{A} in the sense that ONLY an integration is involved. Unlike A though, the force model for case 0 is rudimentary. Please consult the full invitation below for Pass/Fail criteria will be established from a combination submission. The combination submission will be based on a submissions received prior to November 30, 2003. details.

NEW S/W Benchmark (cont.)

1. Pass Submissions received after November 30 will still be analyzed, but WILL NOT be used as part of the combination solution.
2. The established Pass/Fail criteria apply only to submissions $\mathbf{0}, \mathrm{A}, \mathrm{C} \& \mathrm{D}$. There will be no Pass/Fail criteria for submission B.
3. The grading of each submission will be based on a weighted grade with $\mathbf{3 0 \%}, \mathbf{1 0 \%}, \mathbf{1 0 \%}$ and $\mathbf{5 0 \%}$ corresponding to cases $0, \mathrm{~A}, \mathrm{C} \& \mathrm{D}$. The passing grade for each submission will be 80% and above for all of the established categories (POS, EOP, ORBITS, CORRECTIONS).
4. Submission version numbers will start at 30 (versus 1,10 or 20), to eliminate confusion from earlier submissions.

NEW S/W Benchmark (cont.)

jCET

		Godalara Space Eright
		Center
BKG vs NERC		

NEW S/W Benchmark (cont.)

INITIAL STATE DIENERENCES:			
Category	delta x	delta y	delta z
ASI 0 - JCET 0	-0.008	-0.001	0.006
ASI A - JCET 0	-0.008	0.009	0.001
JCET A - JCET 0	-0.002	0.003	0.000
GEOS 0 - JCET 0	0.000	0.000	0.000
GEOS A - JCET 0	0.000	0.000	0.000
BKG 0 - JCET 0	-0.382	-17.410	8.794
BKG A - JCET 0	-0.950	0.083	0.592
NERC 0 - JCET 0	-1.211	-0.033	0.822

S/W Benchmark Summary Phase IV

- New solutions submitted by all groups in previous step
- Large differences between all groups except for GA and JCET
- Some small and large differences seen in the initial elements
- The ACs did not respond to the advertised differences with explanations or revised submissions.
- Due to the loss of Van's time, the considerable amount of work needed to troubleshoot such differences, is not available and with the PP charging ahead with products, we have put this part of the PP into hibernation until we get more people involved and a better response from all groups.

OLD S/W Benchmark (cont.)

- The results of solution "C" were checked and compared to a solution using our nominal modeling (which is nearly identical to that of solution "AA")
- A solution that is free of modeling constraints was submitted (Case D), as we agreed last October.
- The greatest effect improving the results over "C" was (as expected) the inclusion of 1-per revolution along-track \& cross-track empirical accelerations

Goddaral Space Flight Center
ASI - JCET Position Differences
Case

E C Pavlis/JCET/GSFC926

Goalalara
Space
Flight
Center

GEOS - JCET Position Differences

E C Pavlis/JCET/GSFC926
\square

GFZ - JCET Position Differences

April 22. 2004
E C Pavlis/JCET/GSFC926

Case

Radial, Cross- and Along-track Statistics

RCA.gfz.D10-jcet.D12 RCA.gfz.C10-jcet.C12 RCA.gfz.B10-jcet.B11 RCA.gfz.A10-jcet.A11 RCA.geos.D10-jcet.D12 RCA.geos.C10-jcet.C12 RCA.geos.B10-jcet.B11 RCA.geos.A10-jcet.A11 RCA.asi.D14-jcet.D12 RCA.asi.C14-jcet.C12 RCA.asi.B14-jcet.B11 RCA.asi.A14-jcet.A11

Godalard
Space Flight
Center

April 22. 2004
E C Pavlis/JCET/GSFC926

Godalaral
Space Flight Center

E C Pavlis/JCET/GSFC926

S/W Benchmark Summary

Godalard
Space
Flight
Center

- The submitted orbits A - D were compared for ASI, GEOS, GFZ and JCET.
- Other submissions were not included because they were primarily in wrong format (or too incomplete)
- All orbits were compared to JCET orbits
- Comparison was done in various "spaces":
- Straight Cartesian position differences
- Radial, Cross- and Along-Track differences
- Keplerian Elements
- We computed Min, Max, Mean and RMS statistics

S/W Benchmark Summary

II

Godalard
Space
Flight
Center

- The comparisons indicate a good agreement for most of the A-C cases.
- In the case of ASI and JCET, the close coordination in modeling the orbit resulted in practically null differences
- The observed differences in the ASI-JCET case D can be considered the "observer's equation" for SLR
- It seems that there is some typo in the GEOS case A, resulting in large differences, although they too use GEODYN, like ASI and JCET
- We observe this also in the totally independent case of GFZ-JCET, the difference here though is $\mathbf{3}$ times smaller!
- There are some errors also in the case B orbit of GEOS (incomplete?)
- There is really no excuse for such differences when the same s/w is used and the modeling and reduction procedure are so rigidly prescribed

S/W Benchmark Summary III

- The good comparisons with GFZ indicate that we have two independent s/w that perform comparably
- The large differences in case A though needs to be resolved, is it the use of slightly different initial conditions, a typo, or a fundamental difference between the two s/w packages?
- The large semi-axis major and eccentricity, mean and RMS differences of GFZJCET for cases B, C and D, indicate that there is some error or some modeling difference:
- did they use EGM96 and comparable tides?
- why are they much smaller in case A?
- why do cases B, C, D behave so similarly in Keplerian space, while case A is so different from all three?
- The other ACs must submit their contributions soon, so that we can have a meaningful comparison of diverse s/w and analysis groups.
- PLEASE follow the instructions to avoid having your contributions IGNORED.

