

ALOS-4 Mission Overview

Advanced Land Observing Satellite-4

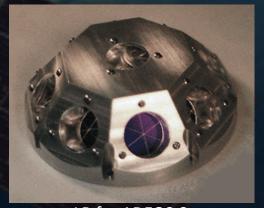
- Observing the Earth's surface using its onboard phased array type L-band synthetic aperture radar (PALSAR-3)
 - Further improved observation performance compared to the predecessor PALSAR-2 aboard the ALOS-2; both higher resolution and broader observation swath
- Monitoring oceans by receiving AIS signals from vessels as well as by acquiring the PALSAR-3 images
 - Effective countermeasures against radio wave interference regions are taken for the SPace based AIS Experiment (SPAISE3) with multiple antennas and groundbased data processing
- Plan to launch in JFY2022
 - Postponed from JFY2021 to JFY2022 (due to change of schedule for the H3 launch vehicle)

Observation Swath (ALOS-2 / ALOS-4)		
Stripmap mode	50 km, 70km /	
(Resolution 3 m, 6 m, 10 m)	100km - 200 km	
ScanSAR mode	350 km, 490 km /	
(Resolution 25 m)	700 km	
Spotlight mode	25 km x 25 km /	
(Resolution 1 m x 3 m)	35 km x 35 km	
Observation Frequency @Japan (ALOS-2 / ALOS-4)		
Stripmap mode	Four times a year /	
(Resolution 3 m)	Once every two weeks	

General Characteristics		
Sensor system	PALSAR-3*, SPAISE-3**	
Operational orbit	Sun-synchronous sub-recurrent	
Orbit altitude	Approx. 628 km (same as ALOS-2)	
Spacecraft size	10.0 m (D) x 20.0 m (W) x 6.4 m (H)	
Spacecraft mass	Approx. 3,000 kg	
Design life	7 years	

^{*}PALSAR-3:phased array type L-band synthetic aperture radar

^{**}SPAISE-3:Space-based Automatic Identification System Experiment


Necessity of SLR Tracking

Precise Orbit Determination (POD)

- SAR Interferometry depends on the accuracy of orbits
 - Mission requirement for orbit accuracy < 10 cm (RMS)
- GPS antennas and receivers will be onboard
 - Pseudorange and carrier phase observations of L1 and L2 signals
- The LR will be onboard
 - The same type LR as ADEOS-2's one
- SLR observations will be;
 - primarily used as independent validation and quantification of GPS based-POD
 - also used for POD in combination with GPS data
- ✓ SLR tracking must be essential for mission success

LR specification		
Manufacturer	KBRwyle	
Type of Array	Hemispherical / Pyramid	
Dihedral Angle Offset	1.5 arcsec	
Flatness of Cube's Surface	1/10 th wavelength 5320 angstroms	
Size of LR	ф160 mm x 65 mm	
Optical Cross Section	5 x 10 ⁵ m ²	
Number of CCR	9 (1 center + 8 surroundings)	

LR for ADEOS-2

Request for Mission Support

Mission Campaign and Restricted Tracking

- JAXA asks favor about ILRS Mission Campaigns
 - Observations more than 100 passes will be expected in two weeks at early operation phase for evaluation and calibration of GPS based-POD
 - If needed (depending on results of above), JAXA may request 2nd campaign.
- Restricted Tracking is necessary during maneuvers (Autonomous orbit control)
 - For avoidance of damage to STT
 - Using go/nogo key would be the best way
- ✓ ILRS support will be strongly appreciated

Future Plan

General Procedure

- Submission of Mission Support Request Form in 2020 or early 2021
 - As soon as the form is ready, prior enough to the launch
- Discussion of restricted tracking with SLR stations
- Test and rehearsal for tracking restriction (and provision of CPF)