GASTON – ILRS support for the Galileo based project

ILRS Networks and Engineering Standing Committee

February 2021

C. Courde

Observatoire royal de Belgique

Description of the ESA-GASTON project

- Recent investigation: Dark Matter (DM) could be on the form macroscopic structure (e.g. Earth-sized)
- Such structures could cross regularly the Earth !
 => New experiments in the Earth's neighborhood: Search for DM transient objects
- Our goal: Search for a coherent succession of glitches of atomic clocks onboard Galileo satellites in case of crossing

Simplest case : planar structures called domain wall

Stable H-maser onboard Galileo satellites

Deep study of systematic effects

3-month SLR campaign

- The DM transient has almost no effect on the propagation of the laser signal: SLR residuals can be used as a reference in order to disentangle the effect of the DM transient on the clocks and signal propagation, and the systematic effects due to orbital errors.
- **Continuous SLR tracking** to a Galileo satellite **is required** by the investigation **to be happening at the exact moment a DM transient is detected**.

Strategy proposal for the GASTON SLR campaign

- 1) Ask the ILRS stations to participate to the 3 months campaign on a voluntary basis
- 2) Ask the station to deliver CRD and FRD data
- 3) Reduce the number of target to the satellites with the best clocks: GASTON Galileo list on the right
- 4) Ask the voluntary stations to install the Eurostat station status display
- 5) Ask the stations to check a dedicated webpage made by OCA (under construction: https://ocatools.oca.eu/galileo/) showing from the Eurostat data, the number of Galileo satellites tracked in real time. The webpage warns the stations when no Galileo is tracked and promote the station to move on one of the Galileo satellite. A color code shows the status in real time: red when no Galileo is tracked, orange when only one station tracked, yellow when two stations tracked a Galileo satellites, green when three or more stations tracked a Galileo.
- 6) To challenge the ILRS stations, the most contributing station over the whole campaign will win a surprise gift from Grasse SLR station.

Table 4: List of PHM with their ADEV at 30s and 15360s

Satellite name	SV ID	ADEV ($\tau = 30$ s)	ADEV($\tau = 15360$ s)
GSAT0102	E12	2.973e-13	1.475e-14
GSAT0103	E19	2.814e-13	6.837e-15
GSAT0203	E26	2.924e-13	4.575e-15
GSAT0205	E24	2.703e-13	3.321e-15
GSAT0206	E30	3.079e-13	1.441e-14
GSAT0207	E07	2.695e-13	2.088e-14
GSAT0208	E08	3.027e-13	6.713e-15
GSAT0209	E09	2.724e-13	7.160e-15
GSAT0210	E01	2.704e-13	5.531e-15
GSAT0211	E02	2.837e-13	1.5459e-14
GSAT0212	E03	2.858e-13	7.890e-15
GSAT0213	E04	2.813e-13	8.866e-15
GSAT0214	E05	2.862e-13	7.296e-15
GSAT0215	E21	2.793e-13	9.884e-15
GSAT0216	E25	2.915e-13	1.210e-14
GSAT0217	E27	2.900e-13	1.494e-14
GSAT0218	E31	2.960e-13	1.076e-14
GSAT0219	E36	2.765e-13	1.102e-14
GSAT0220	E13	2.803e-13	5.2544e-15
GSAT0221	E15	2.664e-13	1.057e-14
GSAT0222	E33	2.960e-13	9.225e-15

Statistics from ILRS over the last 50 days

AZI

Over the last 50 days : - From 60% to 45% of 0 Galileo sat obs in 5 min

Statistics from ILRS over the last 50 days

AZL

Discussion and question

Thanks to all participating stations

Networks and Engineering Standing Committee (NESC)

February 25, 2021 Van S. Husson vhusson@peraton.com

Peraton

Site Information			Data	a Volu	ne			Data Qu	ality				
		LEO	LAGEOS	HEO	Total	Passes	Calibration	Calibration	LAGEOS	LAGEOS			
Location	Station	Passes	Passes	Passes	Passes	Rank	RMS	RMS Rank	RMS	RMS Rank			
Kiev	1824	602	36	0	638	35th	11	25th	40	40th			
Komsomolsk	1868	18	168	1098	1284	31st			30	35th			
Simeiz	1873	2338	366	433	3137	18th	14	27th	18	28th			
Mendeleevo	1874	113	87	177	377	38th	32	30th	25	30th			
Altay	1879	58	264	1613	1935	25th			28	34th			
Riga	1884	535	140	124	799	32nd	6	17th	10	16th			
Arkhyz	1886	472	296	1110	1878	26th			28	33rd			
Baikonur	1887	0	191	519	710	34th			30	36th			
Svetloe	1888	1111	403	265	1779	28th			33	38th			
Badary	1890	1505	476	498	2479	22nd			34	39th			
Irkutsk	1891	1072	255	312	1639	29th	40	31st	31	37th			
Katzively	1893	2496	405	3	2904	20th	25	28th	28	32nd			
Yarragadee	7090	17291	2677	6242	26210	1st	2.9	6th	4.8	3rd			
Greenbelt	7105	5799	890	969	7658	11th	2.9	7th	9.0	12th			
Monument_Peak	7110	6537	772	737	8046	8th	3.1	9th	8.3	11th			
Haleakala	7119	2520	523	0	3043	19th	2.6	5th	9.4	14th			
Tahiti	7124	471	109	0	580	36th	3.2	11th	7.7	8th			
Changchun	7237	8886	1088	5654	15628	2nd	6.6	20th	11.7	18th			
Beijing	7249	2057	349	1435	3841	17th	7.0	22nd	18.1	27th			
Tanegashima	7358	136	14	0	150	39th	1.2	2nd	4.7	2nd			
Sejong	7394	94	27	3	124	40th	3.8	13th	12.3	19th			
Wuhan	7396	898	244	851	1993	24th	8.9	21th	7.3	6th			
Arequipa	7403	4673	241	0	4914	15th	4.5	15th	9.7	15th			
Brasilia	7407	90	65	243	398	37th	29.5	29th	24.0	29th			
Hartebeesthoek_HARL	7501	2634	673	716	4023	16th	3.3	12th	8.2	10th			
Hartebeesthoek_HRTL	7503	1257	468	807	2532	21st	28.7	21th	27.4	31st			
Zimmerwald_532	7810	9468	1916	3731	15115	3rd	6.6	21th	13.6	21st			
Borowiec	7811	1065	197	66	1328	30th	13.6	26th	17.6	26th			
Kunming	7819	3248	620	4253	8121	7th	5.3	16th	11.4	17th			
Shanghai_2	7821	2424	546	2598	5568	14th	6.7	21st	7.1	5th			
San_Fernando	7824	713	59	0	772	33rd	6.2	18th	14.0	23rd			
Mount_StromIo_2	7825	5710	1239	919	7868	10th	3.1	10th	7.5	7th			
Wettzell_SOSW	7827	4086	1087	4255	9428	6th	8.7	23rd	14.3	24th			
Simosato	7838	1415	383	20	1818	27th	6.4	19th	13.8	22nd			
Graz	7839	3249	715	3041	7005	12th	2.4	4th	5.1	4th			
Herstmonceux	7840	6400	1311	3069	10780	4th	4.0	14th	12.9	20th			
Potsdam_3	7841	6546	1321	2739	10606	5th	1.6	3rd	8.0	9th			
Grasse_MEO	7845	510	662	1039	2211	23rd	8.8	24th	15.6	25th			
Matera_MLRO	7941	4964	1704	1229	7897	9th	1.0	1st	3.1	1st			
Wettzell	8834	3222	841	1609	5672	13th	2.9	8th	9.3	13th			

2020 ILRS Station Performance Rankings: (Data Quantity and Single Shot RMSs)

Legend

Top Ten in Data Volume

Top Ten in Calibration RMS

Top Ten in LAGEOS RMS

NESC Feb 2021

Site Informatio	n	F	litotsub	ashi Universit	JCET						
		Col 3:	Col 4:	Col 5:	Col 6:	Col 7:	Col 8:	Col 9:	Col 10:		
		NP RMS	NP RMS	Range Bias	RB Stab	NP RMS	NP RMS	RB Stab	RB Stab		
Location	Station	(mm)	Rank	[RB] Stab (mm)	Rank	(mm)	Rank	(mm)	Rank		
Komsomolsk	1868	5.2	25th	14.2	31st	4.5	30th	16.3	30th		
Simeiz	1873	27.5	34th	19.8	32nd	4.3	28th	9.1	Tie 18th		
Mendeleevo	1874	4.4	23rd	10.0	24th	4.9	33th	17.2	32nd		
Altay	1879	2.5	Tie 13th	20.7	33rd	2.5	Tie 13th	22.9	33rd		
Riga	1884	1.5	Tie 5th	28.5	34th	2.2	10th	26.9	34th		
Arkhyz	1886	4.0	20th	9.0	21st	3.8	24rd	11.6	27th		
Baikonur	1887	4.3	Tie 21st	12.6	28th	3.4	21th	16.5	31st		
Svetloe	1888	5.0	24th	7.4	19th	4.0	26th	7.0	15th		
Badary	1890	5.7	Tie 27th	9.5	23rd	4.4	29th	10.4	25th		
Irkutsk	1891	7.0	31th	8.8	20th	4.2	27th	9.1	Tie 18th		
Katzively	1893	8.3	32st	13.5	29th	5.4	34th	10.3	24th		
Yarragadee	7090	1.6	Tie 8th	1.1	5th	2.1	Tie 7th	1.7	Tie 1st		
Greenbelt	7105	1.8	Tie 9th	1.4	7th	2.4	12th	3.2	8th		
Monument_Peak	7110	1.6	Tie 8th	3.3	Tie 10th	2.1	Tie 7th	5.2	12th		
Haleakala	7119	1.8	Tie 9th	3.5	13th	2.5	Tie 13th	2.9	7th		
Tahiti	7124	5.7	Tie 27th	11.2	27th	2.5	Tie 13th	7.5	16th		
Changchun	7237	3.3	18th	10.3	25th	3.1	18th	10.0	22nd		
Beijing	7249	10.9	33rd	5.9	16th	4.8	32nd	11.2	26th		
Wuhan	7396	3.1	Tie 15th	10.5	26th	2.3	11th	12.1	28th		
Arequipa	7403	3.2	17th	3.4	12th	3.3	20th	10.1	23rd		
Hartebeesthoek_HARL	7501	1.8	Tie 9th	3.3	Tie 10th	2.1	Tie 7th	6.1	14th		
Hartebeesthoek_HRTL	7503	4.3	Tie 21st	4.9	15th	3.5	23nd	5.1	11th		
Zimmerwald_532	7810	1.5	Tie 5th	1.0	Tie 3rd	1.7	Tie 5th	2.5	5th		
Borowiec	7811	6.2	29th	9.4	22nd	4.5	31st	9.1	Tie 18th		
Kunming	7819	3.8	19th	13.9	30th	3.5	22st	12.2	29th		
Shanghai_2	7821	1.5	Tie 5th	4.5	14th	1.7	Tie 5th	9.2	21st		
Mount_Stromlo_2	7825	2.5	Tie 13th	1.0	Tie 3rd	2.5	Tie 13th	5.3	13th		
Wettzell_SOSW	7827	6.2	30th	6.0	17th	3.2	19th	4.5	10th		
Simosato	7838	5.3	26th	7.3	18th	3.9	25th	7.7	17th		
Graz	7839	0.9	Tie 1st	1.2	6th	1.0	1st	2.3	3rd		
Herstmonceux	7840	0.9	Tie 1st	0.7	1st	1.2	Tie 2nd	1.7	Tie 1st		
Potsdam_3	7841	1.1	4th	2.2	9th	1.3	4th	3.4	9th		
Grasse_MEO	7845	3.1	Tie 15th	1.8	8th	3.0	17th	2.7	6th		
Matera_MLRO	7941	0.9	Tie 1st	0.9	2nd	1.2	Tie 2nd	2.4	4th		

2020 ILRS Station Performance Rankings: (LAGEOS NP RMS and Range Bias Stability)

Legend

Top Ten in Range Bias Stability

Top Ten in Range Bias Difference

The most important data quality metric is **range bias stability**, not calibration RMS, not satellite RMS, not normal point RMS.

Updates to Station Pages on ILRS Website

ns Active × +														
https://ilrs.gsfc.nasa.go	v/network/sta	tions/a	ctive/index.html							5¢4				
International Laser Ranging Service A service of the International Association of Geodesy														
About ILRS	Network		Missions	Scienc	e	Data 8	Produ	cts	Tec	Technology				
Network	Home » Net	work » S	Stations » Active Stations											
List of Stations	ILRS Ope	rationa	al Station Identification	on Table										
Active Stations Overview of new station plots	Below is a table of the current site identification schemes for ILRS stations (i.e., 4-letter site codes, SODs, and DOMES numbers). Lists of engineering, inactive/closed stations, and pre-ILRS stations are available. The table is sortable. Click in the column header to sort.													
Engineering Stations Closed/Inactive Stations Future Stations	Monument	Code	Location Name, Country	CDDIS SOD	IERS DOMES Numbers	IGS Site Log	IVS Site Log	IDS Site Log	Date of Latest Site Log	Date of Latest Site History Log				
	1824	GLSL	Golosiiv, Ukraine	18248101	12356S001	Х	-	-	20190904	20140526				
Site Information	1868	KOML	Komsomolsk-na-Amure, Russia	18685901	12341S001	-	-	-	20140127	-				
Site Procedures	1873	SIML	Simeiz, Ukraine	18734901	12337S003	Х	Х	-	20160322	-				
System Performance	1874	MDVS	Mendeleevo 2, Russia	18748301	12309S003	Х	-	-	20130814	-				
	1879	ALTL	Altay, Russia	18799401	12372S001	-	-	-	20090325	-				
Networks and Engineering Standing Committee	1884 1886 1887	RIGL ARKL BAIL	Riga, Latvia Arkhyz, Russia Baikonur, Kazakhstan	18844401 18869601 18879701	12302S002 12373S001 25603S001	- -			20160727 20120215 20120213	20201031 - -				
Quality Control Board	1888	SVEL	Svetloe, Russia	18889801	12350S002	Х	Х	-	20190305	-				
Guanty Control Board	1889	ZELL	Zelenchukskya, Russia	18899901	18899901 12351S002 X			-	20190305	-				
Quick Links	1890 1891	BADL	Badary, Russia	18900901	12338S004	X	Х	X	20190305	-				
Network Man	1893	KTZL	Katzively, Ukraine	18931801	12337S006	X	X	-	20110802	-				

The Station Plot Working Group lead by Justine Woo has redesigned the Station Performance Pages on the ILRS Website. Justine Woo also did all the programming.

Peraton

To access station performance information click on the Station Code hyperlink to go to a station's main page.

Updates to Station Pages on ILRS Website

There are 6 tabs on each station's page. Four of these tabs contain interactive Plots of your data going back to when the CRD format was implemented in May 2012.

Some plots are updated daily.

The 4 tabs are

- 1. Meteorological Data
- 2. LAGEOS Performance
- 3. 7-day Track
- 4. Satellite Data Info

For more information about this plots Click on the "Overview of new station plots" On the left menu bar.

Peraton

Updates to Station Pages on ILRS Website

On the LAGEOS Performance Page you can track the RMS performance of your system on a pass segment or monthly basis.

Now, both your monthly calibration and satellite RMSs are graphed on the same plot.

You can also track changes in your system delay another critical system performance parameter.

Peraton

Progress on San Juan laser station (7406)

Background Info

- The San Juan laser station (SJUL) is located at (S 31°30'31", W 68°37'23", 727.3m) in San Juan of the Republic of Argentina.
- The station sits in the campus of Observatorio Astronomico "Felix Aguilar" (OAFA), affiliated to Universidad Nacional de San Juan (UNSJ).

SJUL Average Temperature (UTC)

SJUL Average Humidity (UTC)

Establishment of SJUL station

 An SLR system with a 60cm-diameter telescope was made in China and was moved to the OAFA of UNSJ at the end of 2005 and it started observation and provide data to International Laser Ranging Service (ILRS) at the end of February, 2006.

SJUL station status and plan

Modules	Current Status	Plan
Telescope	60-cm Cassegrain with Az-El mount	Upgrade encoder, repair servo
Laser	Nd:YAG @532nm 50mJ x 20 Hz, FWHM 50ps	Nd:YAG @532nm 1.2mJ x 1 kHz, FWHM 35ps
Detector	C-SPAD	Кеер
Timer	SR620	Event Timer A032
Controls	Computer	Upgrade software

• The SJUL station stopped data upload since 2014.

Progress Timeline

- July 2019
 - •Check equipment before packing.
- September 2019
 Equipment on board for Argentina.
- November 2019
 Fauinment arrived in S
 - •Equipment arrived in San Juan.
- February 2020
 - •Planned to start work in San Juan.
-
- Now

Waiting for end of epidemic.Waiting for consular service.

Future Applications?

- The SJUL station is important in ILRS network
- And what other things can be done at the site?
- I heard about:
 - Laser communication
 - Quantum experiment (With QUESS/Mozi satellite)
 - Lunar laser ranging
 - What do you think?

Many thanks to Agentina colleagues And ILRS community

iGracias!

Information needed for CoM computation and data quality assessment

IGN/Yebes ASC José Rodríguez 2021-02-25

Unión Europea Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

The Site logs and Station Change History logs are vital to ensure the quality of ILRS products:

- They are needed for the computation of suitable centre of mass corrections for the satellites tracked
- They contain information that can reveal the cause(s) of potential problems in the data
- They are a useful resource for the SLR community (*who's using or doing what?*)

I will highlight next some of the most important items needed, and provide examples of their use

EUROLAS Data Center (ED Deutsches Geodätisches Fo Technische Universität Müno	C) rrschungsinstit chen	ut						TUT
Welcome Data	Welcome >S	itations >	Herstmonc story	eux, United	Kingdom (1 Hers	7840) > Station	eux, United Kingdom (7840)	Navigation
Products Stations	SOD	Year	Day of Year	Time of Day	Data Impact	System	Description	<u>NPT (CRDv2)</u> <u>FRD (CRDv2)</u>
Satellites	78403501	2020	269	10:00	1	5.01	Switched to kHz laser for SLR operations	<u>NPT (CRD)</u> FRD (CRD)
Prediction Provider	78403501	2020	240	09:00	0	5.01	12Hz laser service	NP (CSTG) ER (MERIT-II)
Operation Center (OC)	78403501	2020	211	19:00	1	5.01	Switched to older 12Hz laser for SLR operations	• <u>(MENTAI)</u>
Mailing Lists	78403501	2020	198	18:00	1	06.01.07	New SPAD cable fitted	Tracking Statistics
Tools	78403501	2020	049	18:00	0	7.02	New Ranging PC installation complete	• NPT (CRD)
500 401	78403501	2020	041	21:00	0	7.02	PC fatal crash. Motherboard stopped working.	 FRD (CRD) NP (CSTG)
EDC-API	78403501	2019	136	08:30	1	05.02	New kHz freq-doubler crystal fitted	 FR (MERIT-II)
	78403501	2019	098	08:30	1	05.02	kHz chiller water changed and flow cleaned	Logs
	78403501	2018	339	08:30	1	9.01.02	GPS reference replaced with new S650 GPS receiver	Station History Los
	78403501	2018	275	08:30	1	06.01.07	New SPAD cable fitted	Site Log (ASCII)
	78403501	2018	268	08:30	0	99	correction to rms in CRD record 50 pass statistics	

EUROLAS Data Center (EDC) Deutsches Geodätisches Forschungsinstitut Technische Universität München

Welcome	Welcome >Stations >Herstmonceux, United Kingdom (7840) >Site Log	Navigation
Data	Site Log - Herstmonceux, United Kingdom (7840)	Latest Data
Products		Europeon
Stations	ILRS Site and System Information Form	NPT (CRD) FRD (CRD)
Satellites	International Laser Ranging Service	NP (CSTG)
Prediction Provider	0. Form	FR (MERIT-II)
Operation Center (OC)	Prepared by (Full Name) : Robert Sherwood Preparer E-mail : rshe@nerc.ac.uk	Tracking Statistics
Mailing Lists	Date Prepared : 2018-02-05 Report Type : UPDATE	NPT (CRD)
Tools	Site Log Format Version : 2.0 Site Log Revision :	FRD (CRD)
EDC-API		NP (CSTG) FR (MEDIT II)
	1. Identification of the Ranging System Reference Point (SRP)	• <u>FR (MERTI-II)</u>
	Site Name : Herstancoux TESS DOMES Number : 13112001 CDB Pad ID : 7840 Subnetwork : FURGLAS Description : AZ EL INTERSECT Monument Description : N.A.	• <u>Station History Log</u> • <u>Site Log (ASCII)</u>

ТШ

CoM: things *included* in the modelling

- Cube corner retroreflector physical characteristics (material, size, recess depth)
- Retroreflector array geometry (individual CCR positions and orientations)
- Average return rates
- Laser pulse length and frequency
- Photodetector type and characteristics (jitter and rise time if multi-photon)
- Timing device precision
- Operation policy (single-photon/everything else)
- Data reduction procedure (CAL & SAT)

CoM: things *included* in the modelling

- Cube corner retroreflector physical characteristics (material, size, recess depth)
- Retroreflector array geometry (individual CCR positions and orientations)
- Average return rates
- Laser pulse length and frequency
- Photodetector type and characteristics (jitter and rise time if multi-photon)
- Timing device precision
- Operation policy (single-photon/everything else)
- Data reduction procedure (CAL & SAT)

GROUND SEGMENT

CoM: things not included in the modelling

- Laser polarisation
- Level of theory: geometrical optics
- Presence of other devices in the detection chain, like amplifiers
- Contribution to electrical signals spread caused by e.g. cabling
- Calibration with different setups to those used for satellite ranging
- Gross deviations from stated operational policy
- Any divergence from nominal operation (as detailed in system logs)
- Any deviation from stated data reduction policy
- Any other undocumented issues

CoM: things not included in the modelling

- Laser polarisation
- Level of theory: geometrical optics
- Presence of other devices in the detection chain, like amplifiers
- Contribution to electrical signals spread caused by e.g. cabling
- Calibration with different setups to those used for satellite ranging
- Gross deviations from stated operational policy
- Any divergence from nominal operation (as detailed in system logs)
- Any deviation from stated data reduction policy
- Any other undocumented issues

GROUND SEGMENT

ISSUES

With the information provided, CoM values can be computed, and potential anomalies monitored and rationalised

- The Analysis Standing Committee monitors range biases for the whole network, current and historical
- Several Analysis Centres make available **QC solutions** for the most recent data
- The **Quality Control Board** discusses issues that may need consideration

Site Informati	on	DGFI	Orbit	al Ana	alysis	Hito Orl	tsuba bital /	ashi l Analy	Jniv. sis	Or	JC bital /	ET Analy	sis	мсс	Orbita	al Ana	Analysis SHAO (Orbital Analysis		
Station Location	Station Number	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP																	
Baseline		10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	
Kiev	1824									8.7				33.5				0.0				
Komsomolsk	1868					5.2	15.4	16.6	100	4.5	21.0	20.9	96	5.2	21.0	11.1	97	3.8	22.2	10.9	92	
Simeiz	1873					26.2	32.2	19.8	98	4.7	43.9	8.8	55	20.6	46.9	15.8	85	9.5	59.8	36.5	56	
Mendeleevo	1874					4.7	22.2	10.4	100	5.3	24.1	17.0	91	38.8	9.5	5.9	96	5.2		13.8	95	
Altay	1879					2.2	20.2	21.5	100	2.3	24.9	24.4	99	3.6	20.1	16.7	99	0.9	22.8	15.6	96	
Riga	1884					1.5		28.1	100	2.7		27.9	79	3.0				1.0		28.7	92	
Arkhyz	1886					3.5	28.3	9.0	100	3.6	30.3	12.7	93	3.7	25.8	9.1	98	2.7	31.1	10.9	97	
Baikonur	1887					4.1	13.5	13.0	100	3.5	27.2	20.6	93	11.7	14.2	11.3	97	2.8	27.0	23.6	95	
Svetloe	1888					5.2	9.1	7.8	100	4.1	20.3	6.9	94	5.9	15.0	5.0	98	3.4	27.3	5.2	94	
Zelenchukskaya	1889					3.0				3.0												
Badary	1890					6.7	15.9	10.1	100	4.9	26.7	10.2	95	7.1	16.0	8.0	96	3.5	33.3	8.7	93	
Irkutsk	1891					6.5	20.2	9.1	100	5.6	20.0	9.3	89	6.8	9.7	3.8	94					
Katzively	1893					7.8	22.3	13.5	98	5.2	25.0	11.9	77	8.8	18.0	8.8	90	7.8	21.8	10.4	94	

Table 2: Performance parameters based on various Analysis Centers' rapid orbital analysis results.

Example: tracking system changes in Tahiti 7124

Although **SLR** has far **fewer discontinuities** than **GNSS**, they are <u>known to happen</u>

Although **SLR** has far **fewer discontinuities** than **GNSS**, they are <u>known to happen</u>

Although SLR has far fewer discontinuities than GNSS, they are known to happen

With the information provided, we an correlate significant events with features in the data:

- New **detector** in early 2018, similar characteristics to previous one
- New **laser** in late 2018: 10 ps increase in pulse width: small change

Although SLR has far fewer discontinuities than GNSS, they are known to happen

Although SLR has far fewer discontinuities than GNSS, they are known to happen

Concluding notes

- For CoM modelling nominal operation always assumed
- Computations performed on the basis of the information available:
 - If something changes, it has to be reflected in the logs
- Long-term, stable biases are modelled well by the Analysis Standing Committee
- Discontinuities need all possible information to rationalise
- Online resources available to track station performance
- The ILRS community itself is a resource that can offer help
- I commend the stations mentioned (Tahiti, Shimosato) for making the required information available

Some online resources

https://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/monthly/

http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/

http://geo.science.hit-u.ac.jp/slr/bias/

Interna A servit	tional Laser Ranging	Service				Search IAG GGOS
About ILRS	Network	Missions	Sc	ence	Data & Products	Technology
Network	Home » Network	× System Performanc	e » Global Report	Cards » Monthly	Report Cards	
List of Stations	Monthly Glo	bal Report Card	s Quarterly G	lobal Repor	t Cards	
Site Information	71-11-00-1		-			
Site Procedures	since 2012, Some	en generating report ca e assumptions made wh	ich were integrated	into the initial soft	on a quarterly basis since 19 ware that created reports pri	or to 2020 are no longer
System Performance	valid due to opera which stations tra	ational and technical imp ck, and pass interleavin	provements in the ne g.	twork, such as a	n increase in the number of t	argets, different ways in
Monthly/Quarterly Global Report Cards	Therefore, new se summarizing data	oftware has been develor from 2020 onward. Th	oped by CDDIS, revi ese revised report c	ewed within the II ards address add	RS Central Bureau, and imp itional needs of the communi	lemented for report cards ty and correct assumptions
Monthly Station Performance Maps	The new software	hal software. The differe	nces between the p erate the data for the	previous report can previous years'	d and the current one are av reports (from May 2013 to De	allable. ecember 2019); these are
Station Info Plots		ious. Duit abea to gen	erate the Loco onin	no reports are as	o available.	
Daily Status Charts	- 2021		_ 2020		_	
Potsdam CPF time bias service	January February	July August	January February	July August		
Real-Time Status Exchange (EUROStat)	March April May	September October November	March April May	September October November		
7-Day Groundtrack of	June	December	June	December		

Latest Analysis Report: >> from 06h UTC, 11 Feb 2021 to 06h UTC, 25 Feb 2021 (updated 08:11 UTC, 25 Feb 2021)

	Stations with high productivity														
sat	orbit fi WRMS	t # pass/# NP	1st	: site(ID)	# pas	s/# NP	2n	d site(ID)	# pass/# NP	3r	d site(ID)	# pass/#	NP		
	in mm														
<u>Lageos-1</u>	10	401 / 3094		Yarragadee	(7090)	54/426	B	Changchun (7237) 30/284	-	Wettzell (88	334) 27/15	55		
Lageos-2	11	331 / 2957	8 7	Yarragadee	(7090)	45/502	87	Matera (794	1) 26/261	-	Changchun (7237) 26/2	248		
Etalon-1	12	51 / 257	1	Yarragadee	(7090)	8/47	8.7	Grasse (784	5) 8/29	-	Wettzell (88	334) 7/59			
Etalon-2	15	62 / 288		Yarragadee	(7090)	11/74	-	Wettzell (8	834) 10/58	8.7	Grasse (784	5) 8/30			
<u>Ajisai</u>	27	510 / 5741	22	Yarragadee	(7090)	76/891	1	Changchun (7237) 42/386	10	Zimmerwald	(7810) 32/	/359		
Lares	15	297 / 2902		Yarragadee	(7090)	47/556	-	Potsdam (78	41) 31/297	-	Wettzell (88	334) 30/29	99		
<u>Starlette</u>	21	314 / 3079	1	Yarragadee	(7090)	72/888	SP	Mt Stromlo	(7825) 34/487	57	Zimmerwald	(7810) 27/	/288		
<u>Stella</u>	31	194 / 1406	20	Yarragadee	(7090)	36/333	87	Changchun (7237) 25/160	-	Potsdam (784	41) 20/163	3		
and more satellite	s (GNSS and	LEO) are include	d in	the reports!!											

Archive: (each covers 14 days from the date) 2020 2019 2018 2017 2016 2015 2014 2013 2012 v1: Year 2011 2010 2009 2008 2

Thank you

2. CoM: things *adjusted* in the modelling

- Average **optical properties** of retroreflector array
 - Includes aberration, thermal effects and imperfect geometry (or CCR spoiling)
 - How? \rightarrow from millions of strictly single-photon data points from Herstmonceux
 - Does it work? \rightarrow YES (Rodríguez et al, Upgraded modelling for the determination of centre of mass [...], JoG 2019)
- **Discriminator settings** for multi-photon operation and PMT/MCP detectors
 - Nobody knows these values, and they change if station engineers tweak settings
 - How? → Manually, on the basis of agreement between simulated and empirical detection distributions
 - Does it work? \rightarrow Confident for LAGEOS, more uncertain for bigger targets

From Rodríguez et al. Updated CoM tables [...], Canberra, 2018

© NERC All rights reserved

20180403 11:16