

SYstèmes de Référence Temps-Espace

Networks and Engineering standing Committe (NESC)

8th November, 2022

Towards a Lunar Laser Ranging at the sub-centimetric level

Adrien Bourgoin

SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC, Univ. Paris 06, Paris, France

7-11 November 2022 Yebes, Spain

RECONNECTING THE ILRS COMMUNITY

Science with LLR; past and future [Viswanathan et al., BAAS (2021)]

• Lunar Physics and deep lunar interior

Past: Fluid lunar core dimension, triaxiality of the fluid lunar core [Viswanathan *et al.*, GRL (2019); Rambaux *et al.*, JSRS (2019)] Future: Presence of a solid inner core? It could explain the presence of a long lasting dynamo field [Laneuville *et al.*, EPSL (2014)]. New retroreflectors could enable a detection

• Dissipation within the Earth-Moon system

Past: Earth tidal dissipation [Folkner *et al.,* **INPR** (2014)]. Friction at the CMB [Williams *et al.,* **JGR** (2001)]. Dissipation controls the long-term evolution of the Earth-Moon system. Presence of <u>an unexplained</u> secular drift in eccentricity 10⁻¹²/years [Williams *et al.,* **CMDA** (2016)]. **Future**: How to improve the constraints? Better determination of Love numbers, core size, and moment of inertia. New

Future: How to improve the constraints? Better determination of <u>Love numbers</u>, <u>core size</u>, and <u>moment of inertia</u>. New retroreflectors? <u>More LLR stations</u> for more favorable geometry to observe <u>librations</u>?

• Earth Orientation Parameters

Past: Modern data seems to be able to measure EOPs (few <u>mas</u> for the terrestrial pole offsets, few <u>µs</u> for the Earth Rotation phase) [Vijay Singh *et al.*, ASR (2021)] (see also Friday's presentations by Hannover team)
Future: Can LLR contribute efficiently to EOP determination? <u>Simultaneous observations</u> at a <u>fixed latitude</u>? More LLR stations in the <u>south hemisphere</u> for a better determination of <u>precession</u> and <u>nutations</u>?

• Fundamental Physics (LLR is still one of the best probe to test GR)

Past: SEP and WEP [Williams *et al.*, **IJMPD** (2009)], geodetic precession and gravito-magnetism [Soffel *et al.*, **PRD** (2008)], variation of the gravitational constant [Hofmann *et al.*, **CQG** (2018)], Lorentz symmetry violations [Bourgoin *et al.*, **PRL** (2016), **PRL** (2017), **PRD** (2021)], etc.

Future: How to improve the constraints? <u>Modeling improvements</u> and new data points at <u>new</u> and <u>full moon</u> [Müller *et al.,* **PRD** (1998)]. <u>IR observations</u> important in the context of fundamental Physics.

How to improve LLR data processing pipelines?

• Tropospheric delays

Currently: Effect on the light-time @ <u>1m</u> and up to <u>10m</u>. IERS recommend spherical symmetry models [Mendes *et al.*, **GRL** (2004)]. Impact of <u>horizontal gradients</u> @ <u>30cm</u> [Hulley *et al.*, **JGR** (2004)]. Reabsorbed in other parameters...

Future: Need for more robust models of tropospheric delays. SLR models with horizontal gradients [Drozdzewski *et al.,* JoG (2019)]. New models in the framework of relativistic geometrical optics? [Bourgoin PRD (2020)]

Tests of fundamental Physics

How to improve LLR data processing pipelines?

• Incompatibility between GRAIL gravity field and LLR data

Currently: Imposing GRAIL gravity field during LLR data analysis generates strong signatures in residuals [Viswanathan *et al.*, **AGU** (2019)]. Need to fit C₃₂, S₃₂ and C₃₃ (cf. Figure, with permission of Vishnu Viswanathan). <u>Cause unknown yet</u>. **Future**: Need to solve for this issue, GRAIL provides better constraints. Unmodeled dissipation? Tidal model not accurate enough? Reference frames issue (selenocentric for GRAIL and barycentric for LLR)?

Fig. 3: Impact of deg-3 gravity field on LLR solutions.
A: Solution fixed to GRAIL, B: Some degree-3 gravity coefficients allowed to be adjusted.
Adjusting some gravity field coefficients (at 1%) through LLR fits, absorbs this longitude libration signature.

How to improve LLR data processing pipelines?

• Unmodelled systematic errors

Currently: Least squares fitting provides over-optimistic uncertainties. Cannot consider unmodelled systematic errors. Systematics visible with subsets of data [Bourgoin *et al.*, PRL (2016); PRL (2017); PRD (2021)]. Strongly dependent of stations/instruments Future: Need for more robust modeling with better control on systematics. Provide more realistic uncertainties. Better tests of

fundamental Physics.

Station or instrument	Period	N		0.4	<u>I</u>	1	Ī	I	I	ļ	1	
Haleakala	1984–1990	770		0.2					•			
Matera	2003-2015	118		0	:		:				:	
McDonald (2.7m)	1969-1985	3604		0					-	-	-	
McDonald (MLRS1)	1983-1988	631		-0.2		· · · · · ¹ . · · · · ·	·····		•	·····		
McDonald (MLRS2)	1988-2015	3670	\bar{S}^{IX}	-0.4	L			•				
Grasse (Rubis)	1984–1986	1188	$[\times 10^{-12}]$	-0.4	Tτ	·T	T	Ť	Ξ	. I T	÷ -	
Grasse (Yag)	1987-2005	8324		-0.6		···· <u>+</u> ····	•••••	•••••	····			
Grasse (MeO)	2009-2016	1732		-0.8								
Grasse (IR)	2015-2016	1337		0.0		. 1	Ļ	1	+	- † - I		
Apache Point	2006-2010	941		-1			·····		· · · · · · · · · · · · · · · · · · ·			
Apache Point	2010-2012	513		-1.2	i	İ			 	I	İ	
Apache Point	2012-2013	360			0	2	4	6	8	10	12	
Apache Point	2013-2016	834						Ы				
								IU.				