GIOVE-A schematic

Vector \mathbf{C} is from the spacecraft reference point to the satellite's centre of mass CoM. Vector \mathbf{L} is from the spacecraft reference point to the mass centre of the tray containing the 76 corner cubes.
From the ESA document 'Specification of GALILEO and GSTB-V2 Space Segment
Properties Relevant for Satellite Laser Ranging, ESTEC, Nov 2005':
$\mathbf{C}=(-4,+1,+788) \mathrm{mm}$,
$\mathbf{L}=(-832,-654,+1489) \mathrm{mm}$

The plane of the front faces of the cubes is +14.6 mm in the Z direction from the LRA mass centre (V. Vasiliev, IPIE, Russia);
The cubes' phase centres are $-\mathrm{h} * \mathrm{n}$ in the Z direction from the plane of the front faces of the cubes;
For the GIOVE-A cubes, $\mathrm{h}=19.1 \mathrm{~mm}, \mathrm{n}=1.46$. So phase centres are -27.9 mm in Z .
So z-component of array phase centre is $(-27.9+14.6)=-13.3 \mathrm{~mm}$ from LRA mass centre. So defining vector \mathbf{L}^{\prime}, as the vector from the spacecraft reference point to the phase centre of the retro array, we have
$\mathbf{L}^{\mathbf{\prime}}=(-832,-654,(+1489-13))$, i.e. $\mathbf{L}^{\mathbf{\prime}}=(-832,-654,+1476)$
Finally, the vector $\mathbf{C P}$ from the spacecraft centre of mass to the phase centre of the retro array is $\mathbf{C P}=\mathbf{L},-\mathbf{C}$
So $\mathbf{C P}=(-832,-654,+1476)-(-4,+1,+788)=(-828,-655,+688)$ in satellite fixed frame.

