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INTRODUCTION

• Geodetic applications

– associated measurements are frequently sampled

• Crossover points

– the ground track of a satellite intersects itself on the surface of the earth

– measures at the same geographic location separated in time

– relevant in satellite Geodesy:

∗ satellite altimetry (oceanography)

· refinement of satellite orbits (Cloutier 1983,. . . , Kozel 1995)

∗ calibration of a gravity field model (Klokocnick & Wagner, 1994)

• Ideal situation:

– Repeat Ground Track Orbits
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PROCEDURE OF MISSION DESIGN

• Experiment requirements:

– technical limitations of the sensors

– geographic or geodesic aspects

– constrain the orbital parameters to a subset of limited values

• First order of J2 design:

– provides a rough estimate of the nominal solution

• Refinement of the orbital elements:

– trial and error −→ good nominal set of orbital elements

∗ “good”: the satellite does not drift substantially from the RGT

– fine tuning of semimajor axis and eccentricity

– manual iterative sequence
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GEODETIG MISSIONS

• Minimize altitude variation:

– small constant value of e

– frozen argument of the perigee

• Brouwer’s equations of motion −→ oblate Earth

– First order of J2 analytic approximation:

∗ no secular variation in a, e, and i

∗ regression of the node

∗ line of apsides: critical inclination

· sin i > 2/
√

5 ⇒ advances

· sin i < 2/
√

5 ⇒ regresses
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FIRST ORDER OF J2 DESIGN

• Lagrange equations of motion (secular variation)

da

dt
= 0

de

dt
= 0

di

dt
= 0

dω

dt
= − 3nJ2

2a2(1− e2)2


5

2
sin2 i− 2




dΩ

dt
= − 3nJ2

2a2(1− e2)2
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
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
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FROZEN ORBITS

• Also consider J3 (Dallas, 1970; Cutting et al. 1978)

• Reduced system: (si ≡ sin i)

dω

dt
=

3α2µ
1
2(4− 5s2

i )

4a
7
2(1− e2)2


J2 +

J3α

2a
sin ω

s2
i − e (1− s2

i )

e (1− e2)2si




de

dt
= −3α2µ

1
2(4− 5s2

i )

4a
7
2(1− e2)2

J3α

2a
si cos ω

– critical inclination

∗ sin i = 2/
√

5 ⇒ (de/dt) = (dω/dt) = 0

– low eccentricity:

∗ cos ω = 0 ⇒ (de/dt) = 0

∗ s2
i − e (1− s2

i ) = γ e (1− e2)2si ⇒ e0 ≈ si/γ ⇒ (dω/dt) = 0

γ ≡ −2(a/α) (J2/J3) >> 0
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LIBRATION OF THE PERIGEE

• Interesting property:

– e ≈ e0 ⇒ perigee librates
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EQUILIBRIA SOLUTIONS

• Frozen orbits as previously defined are NOT equilibria:

– (da/dt) �= 0, (di/dt) �= 0, etc

– orbital elements need further adjustment

• More strict definition of frozen orbits (Coffey, Deprit & Deprit, 1994)

– equilibria solutions of an averaged form of the zonal problem

W =
µ

r
− µ

r

∑
m≥2

(α

r

)m
JmPm(z/r),

∗ average in the mean anomaly and in the node

∗ not restricted to a first order averaging

∗ nor also limited to J2 and J3

· J3 = O(J2
2 ) ∼ J4 etc.
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OUR ALTERNATIVE

Frozen orbits are periodic solutions
of the non-averaged (reduced) problem

• Zonal problem is axial symmetric

• Cylindrical coordinates (ρ, λ, z, P, Λ, Z) decouple the problem

– motion IN the ρ-z plane: 2-DOF

– motion OF the ρ-z plane:

∗ λ = λ0 + Λ
∫

ρ(t)−2dt

– polar orbits also periodic in 3-D (Λ = 0⇒ λ = λ0)

– otherwise: motion of the node

∗ ρ(T ) = ρ0

∗ z(T ) = z0

∗ Ω̇ = (λ(T )− λ0)/T
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EXAMPLE: 2-D PERIODIC SOLUTIONS
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a = 10559.26 km, e = 0.3463, i = 116.556◦, g = 270◦

(Ellipso Borealis-type)
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FAMILIES OF (FROZEN) 2D-PERIODIC ORBITS
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Lara, Deprit & Elipe, Celest. Mech. 1995 (9 zonal harmonics)

• Numerical integration

• 2-D differential corrections algorithm

• Poincaré continuation method: z-component of the angular momentum
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REPEATING GROUND-TRACK ORBITS

• Ground track:

– path followed by the subsatellite points on the surface of the Earth

• Repeat ground track condition:

N (θ̇E − Ω̇) Tν = 2π D

– Tν length of the nodal period (period in the ρ-z plane)

– θ̇E Earth rotation rate (assumed constant in the z-direction)

– Ω̇ motion of the line of nodes (forced by the equatorial bulge)

– D number of nodal days (repeat cycle)

– N number of nodal periods (cycle length)

• Earth fixed (rotating) frame
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EXAMPLE OF REPEAT GROUND-TRACK ORBIT
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3 nodal periods in 1 nodal day
(Molnya-type repeat ground track orbit)
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FAMILIES OF REPEAT GROUND-TRACK (3D-PERIODIC) ORBITS
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Lara, J. of Astronautical Sciences 1999

• Numerical integration

• 3-D differential corrections algorithm

• Poincaré continuation method. Parameter: Jacobian constant
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MISSION DESIGN: GEODETIC SATELLITES

• Jason

– Repeat cycle 10 days; length 127 periods

– 2-line orbital elements i = 66.0444◦, e = 0.0007776

• Family Sp of 10/127 RGT 3-D periodic orbits in a rotating frame

– minimum in eccentricity i ∈ [65.86◦, 66.13◦] ⇒ e = 0.0006
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HOW TO FIND (PERIODIC) RGT ORBITS

• Zonal problem is biparametric

H ≡ 1

2


P 2 +

Λ2

ρ2
+ Z2


− µ

r
+

µ

r

∑
m≥2

(α

r

)m
JmPm(z/r)

– H(ρ, z, P, Z, Λ) = E

• Searching in the E-Λ plane we find 2-D periodic orbits that are RGT orbits

– Repetition cycle related with the semimajor axis ⇒ E

θ̇E/D = n/N, n =
√
µ/a3,

– Node rate Ω̇ related with the inclination ⇒ Λ

Ω̇ =
λ(T )− λ0

T
=

Λ

T

∫ T

0

dt

ρ(t)2
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PRACTICAL PROCEDURE

1. First order of J2 analytic approximation

• approximate initial conditions in cylindrical coordinates

• 2-D periodic (frozen) orbit ≈ N/D RGT

2. Continuation for variations of E until exactly N/D RGT

3. If necessary, continuation for variations of Λ until

• sun synchronous

• desired inclination (almost circular orbits)

• desired eccentricity (critically inclined orbits)

4. Totally automated: SADSaM

• a Software Assistant for Designing SAtellite Mission

• Input: Repeat cycle (N, D), gravitational model, i (or e, or sun synch.)

• Output: a, e, i, ω, Ω (averaged) —AND— (x, y, z, ẋ, ẏ, ż)
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End
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ENVISAT

• Sun synchronous; repeat cycle 35 days; length 501 orbits;

– SADSaM: a = 7159.49, e = 0.00114, i = 98.5446◦, ω = 90◦

– Real: a = 7159.49, e = 0.00115, i = 98.5425◦, ω = 91.9◦

• Propagation 2500 days, GEMT-1 36× 36, Moon, Sun ( Itziar Barat, ESTEC )

-0.00006 -0.00002 0 0.00002

0.00112

0.00114

0.00116

0.00118

-0.00006 -0.00002 0 0.00002

0.00112

0.00114

0.00116

0.00118

– Left: real. Right: SADSaM

– Abscissas e cos ω, ordinates e sin ω
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CONCLUSIONS

• RGT configurations are highly desirable for missions of geodetic satellites

• RGT orbits are 3D periodic solutions (gravitation only) in a rotating frame

• Classical approach for mission designing is based on trial and error

• Contrary, SADSaM do the job in a totally automated way
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