

The new ADS-B based aircraft avoidance system at the MLRO

D. Iacovone, <u>G. Bianco</u> *MLRO, Matera, Italy*

Intro

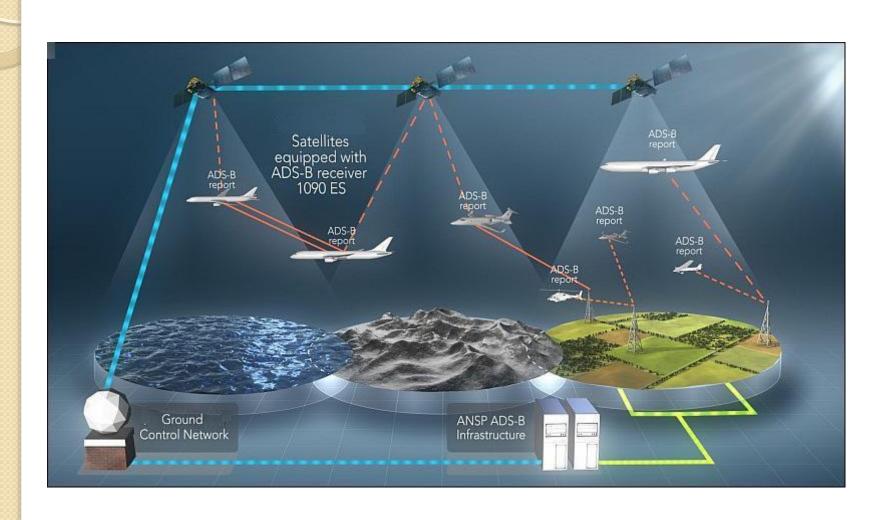
- The Matera Laser Ranging Observatory (MLRO) has been equipped since the beginning with a pulsed radar aircraft avoidance system.
- We have added redundancy in the safety subsystem by means of the integration of a new aircraft avoidance system based on the ADS-B technology.

ADS-B

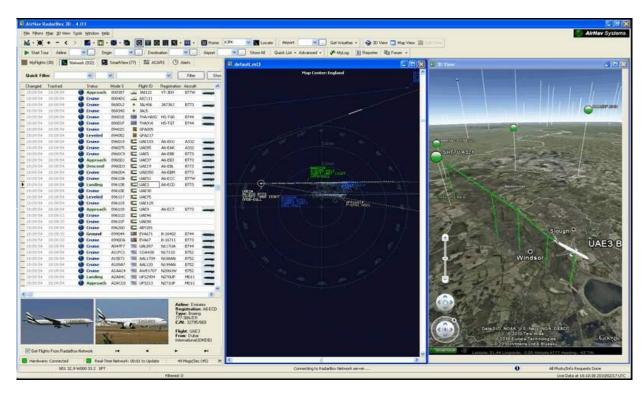
Due to the difficulty in obtaining the position of aircrafts flying far from ground based pulsed radar systems, international air traffic control authorities are supporting the use of *virtual* radar systems with GPS-based technology.

The ADS-B (Automatic Dependent Surveillance – Broadcast) technology allows for a continuous information transmission between aircraft and ground stations.

Advantages


- Improved safety
 - Info available to pilots as well
 - Increased aircraft range
- New services
 - Meteo info
 - Maps
 - Pilots know their position relative to nearby aircraft
- Cheaper ground stations

Main international programs


- NextGen (Next Generation Air Transportation System), FAA
- SESAR (Single European Sky ATM Research), Eurocontrol

Eurocontrol decided that all new aircrafts from January 2015 on shall carry a ADS-B based transmitter. Older aircraft shall comply from December 2017.

ADS-B communication system

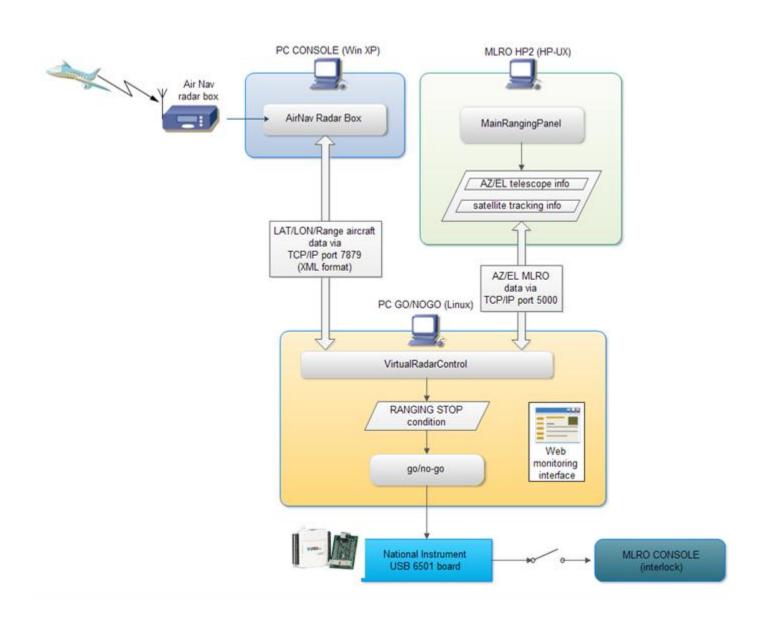
RadarBox (AirNav Systems)

Antenna and amplifier

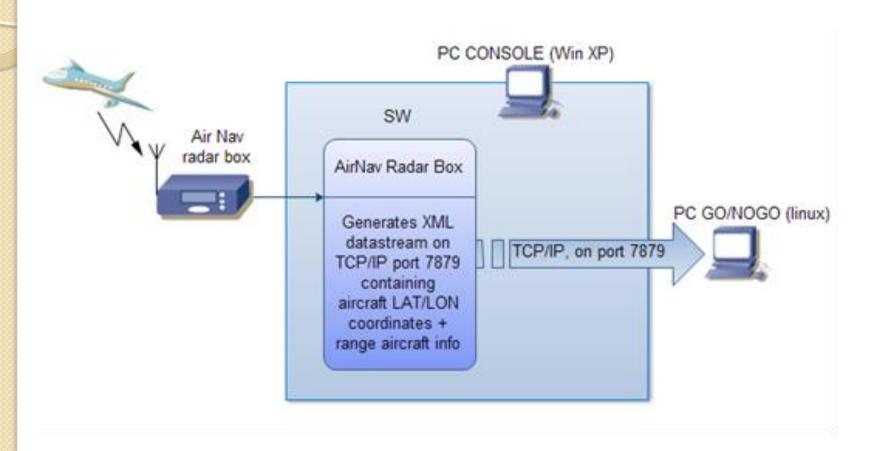
	Antenna GP-1090
Spec	Value
Bandwith	1070 -1110 MHz
Gain	5dB + / - 0.5 dB
Connector	N-type
Length	55 cm
Cable	RG58, 20 mt
-	-

	Amplifier AS-1090
Spec	Vakue
Bandwith	1030 -1090 MHz
Gain	12dB
NF	0.9 dB
Power supply	12 VDC
Current	100 mA
Max input level	+2dB
Connector	N-type
Size	74 x 93 x 45 mm

Risk scenarios

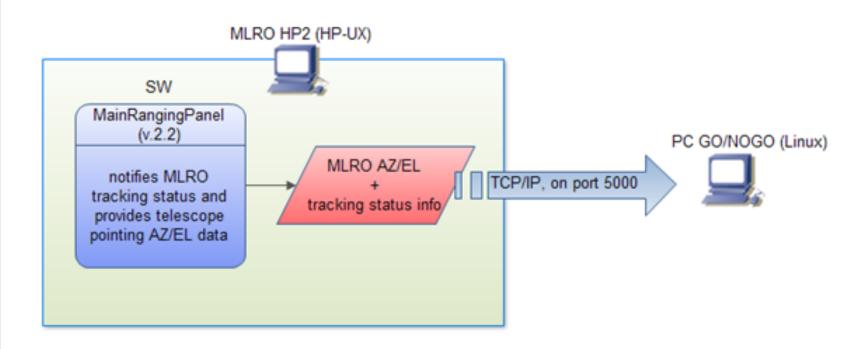

Aircraft	Best case	Worst case
Military	$V_{aereo} = 600 \frac{m}{s} @ 40 \text{ km}$	$V_{aereo} = 600 \frac{m}{s} @ 300 m$
	$\omega_{aereo} = 0.86 \frac{\circ}{s}$	$\omega_{aereo} = 63 \frac{\circ}{S}$
Civilian	$V_{aereo} = 220 \frac{m}{s} @40 Km$	$V_{aereo} = 220 \frac{m}{s}$ @ 300 m
	$\omega_{aereo} = 0.32 \frac{\circ}{s}$	$\omega_{aereo} = 36 \frac{\circ}{s}$

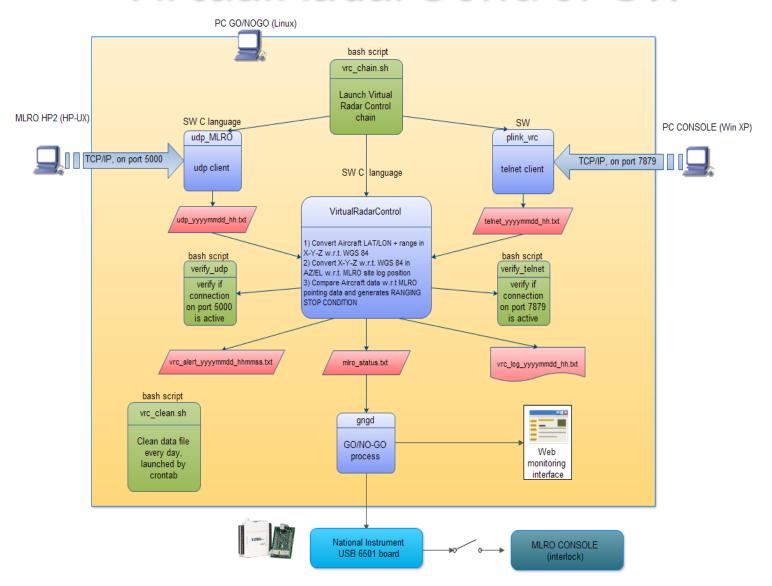
In case of a low flying aircraft the RadarBox is not reliable due to the 1s period of its \ll Mode S \gg transmission; hence it cannot replace the pulsed radar (750 Hz pulse rate) but only complement it. Moreover, any aircraft flying over the MLRO area is not necessarily equipped with such a transmitter (such as Georg's glider \odot) so at this time it is not yet possible to get rid of the pulsed radar.


MLRO virtual radar specs

Parameter	Value
Azimuth	$(AZ_{MLRO} - 10^{\circ}) \le AZ_{aereo} \le (AZ_{MLRO} + 10^{\circ})$
Elevation	$(EL_{MLRO} - 10^{\circ}) \le EL_{aereo} \le (EL_{MLRO} + 10^{\circ})$
Range max	40 Km
Latency of aircraft position	5 sec
Latency of MLRO pointing	5 sec

SW Architecture


AirNavBox 3D SW


Mode-S data packet

```
<MODESMESSAGE>
      <DATETIME>20130328132800
      <MODES>390E31</MODES>
      <CALLSIGN>AIZ271</CALLSIGN>
      <aLTITUDE>36000</aLTITUDE>
      <GROUNDSPEED>378</GROUNDSPEED>
      <TRACK>285</TRACK>
      <VRATE>0</VRATE>
      <AIRSPEED>000</AIRSPEED>
      <LATITUDE>40.5656
      <LONGITUDE>16.4516
      <SQUAWK>3755</SQUAWK>
</MODESMESSAGE
```

MainRangingPanel 2.2 SW

VirtualRadarControl SW

Conclusions

- The new ADS-B based aircraft avoidance system has been designed, built and integrated into the MLRO system by e-Geos
- The new system is currently set up as a backup system in case of main radar system failure.

···ooops···!