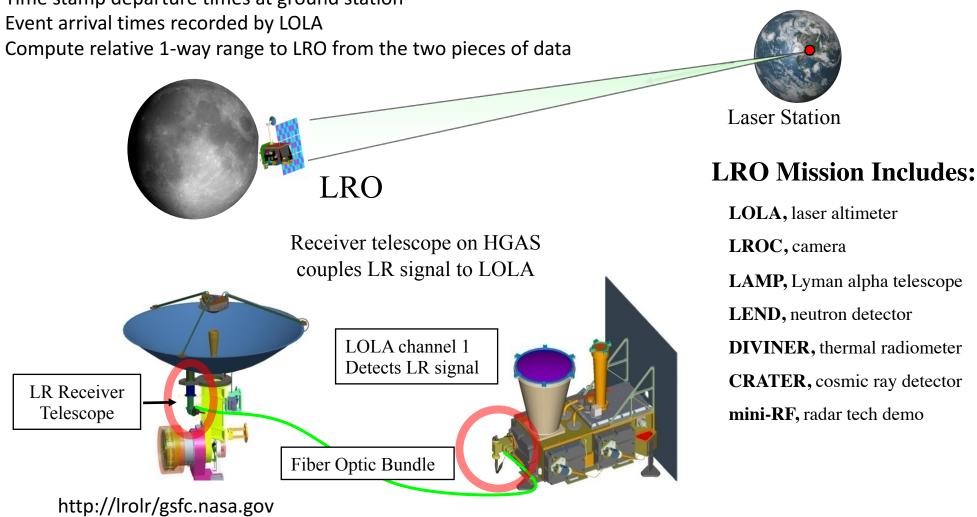

## The Contributions of Laser Ranging to the LUNAR RECONNAISSANCE ORBITER Mission



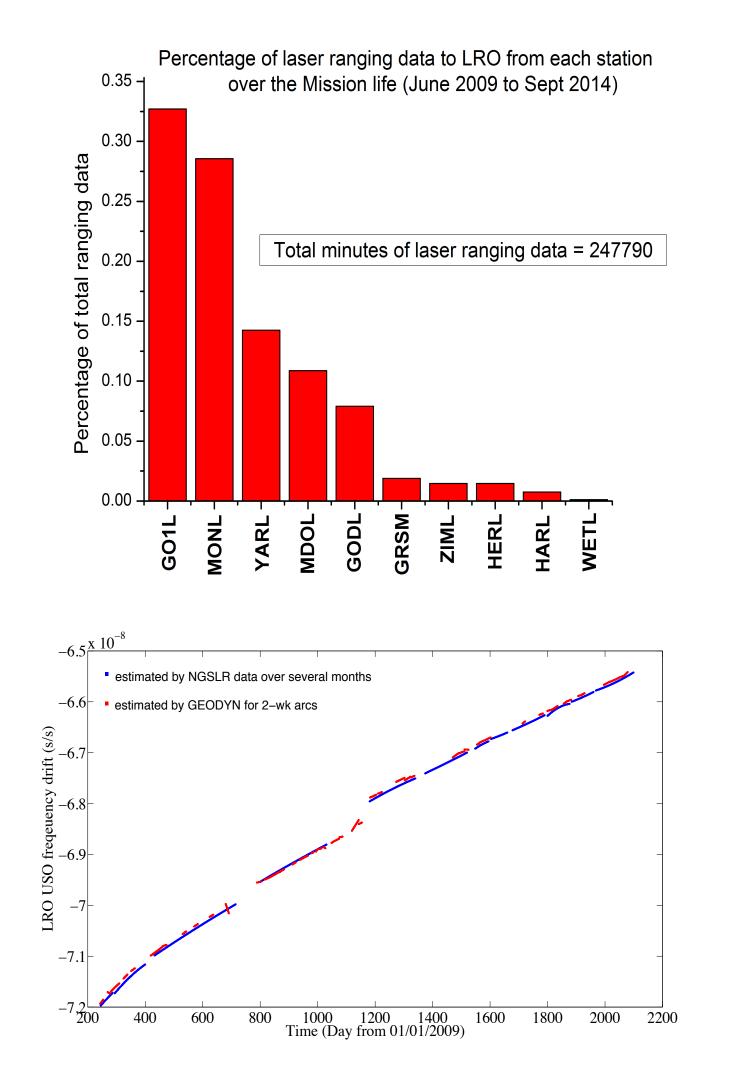
Jan McGarry<sup>1</sup>, Dandan Mao<sup>2</sup>, Erwan Mazarico<sup>1</sup>, Greg A. Neumann<sup>1</sup>, Xiaoli Sun<sup>1</sup>, Mark H. Torrence<sup>3</sup>, Michael K. Barker<sup>2</sup>, Evan Hoffman<sup>1</sup>, Julie Horvath<sup>4</sup>, David E. Smith<sup>5</sup>, Maria T. Zuber<sup>5</sup>



1 NASA Goddard Space Flight Center 2 Sigma Space Corporation 3 Stinger Ghaffarian Technologies 4 KBRwyle (formerly HTSI) 5 Massachusetts Institute of Technology



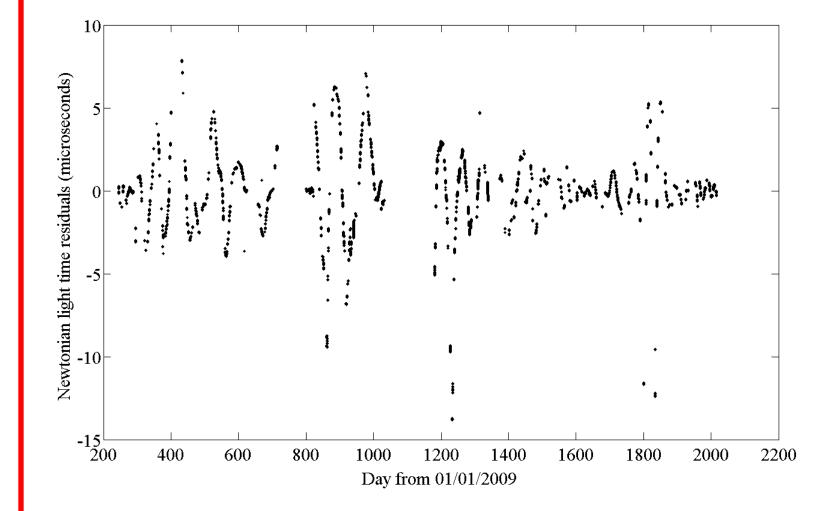

Laser Ranging (LR) to the Lunar Reconnaissance Orbit (LRO) was active from June 2009 to September 2014 using a one-way (uplink only) technique where the ground stations fired their lasers at LRO and recorded the fire times and the spacecraft altimeter, the Lunar Orbiter Laser Altimeter (LOLA), measured the receive events, telemetering them down in the S-band data stream. Ten ILRS stations (with NGSLR at Goddard's Geophysical and Astronomical Observatory being the primary) participated in this ranging, generating over 4000 hours of successful LR data. LR data was used to calibrate the spacecraft clock and to improve the orbital accuracy in the radial direction over just S-Band data alone. In addition the data was used to demonstrate that LR data alone can provide good orbital solutions when used with high-resolution gravity models.


| Station | Location | Synch | Firerate | Max #/ | Expected  | Station   | Date of first | LR Status |
|---------|----------|-------|----------|--------|-----------|-----------|---------------|-----------|
|         |          | to    | (Hz)     | sec in | energy at | Frequency | successful    |           |
|         |          | LOLA? |          | LOLA   | LRO (fJ / | Source    | ranging to    |           |



Transmit 532 nm laser pulses at =< 28Hz to LRO Time stamp departure times at ground station




|                             |                   | LULA. |    | window | sqcm)   | Source                            | LRO         |             |
|-----------------------------|-------------------|-------|----|--------|---------|-----------------------------------|-------------|-------------|
| NGSLR                       | Maryland,<br>US   | Yes   | 28 | 28     | 1 to 5  | Maser (18-<br>Oct-2010)           | 30-Jun-2009 | Operational |
| MLRS,<br>McDonald           | Texas, US         | No    | 10 | 2 to 4 | 1 to 10 | Cesium                            | 02-Jul-2009 | Operational |
| MOBLAS-7,<br>Greenbelt      | Maryland,<br>US   | No    | 10 | 2 to 4 | 1 to 3  | Maser                             | 02-Jul-2009 | Operational |
| Herstmonceux                | Great<br>Britain  | Yes   | 14 | 14     | 1 to 3  | Maser<br>(13-May-<br>2010)        | 13-Jul-2009 | Operational |
| Zimmerwald                  | Switzerland       | Yes   | 14 | 14     | 1 to 3  | Ovenized<br>crystal<br>oscillator | 20-Jul-2009 | Operational |
| Wettzell                    | Germany           | Yes   | 7  | 7      | 1 to 10 | Cesium                            | 30-Oct-2009 | Operational |
| MOBLAS-6,<br>Hartebeesthoek | South<br>Africa   | No    | 10 | 2 to 4 | 1 to 3  | Maser                             | 05-Dec-2009 | Operational |
| MOBLAS-5,<br>Yarragadee     | Australia         | No    | 10 | 2 to 4 | 1 to 3  | Maser<br>(14-May-<br>2010)        | 25-Jan-2010 | Operational |
| MOBLAS-4,<br>Monument Peak  | California,<br>US | No    | 10 | 2 to 4 | 1 to 3  | GPS<br>steered<br>Rubidum         | 03-Feb-2010 | Operational |
| Grasse/MEO                  | France            | No    | 10 | 2 to 4 | 1 to 10 | Cesium                            | 18-May-2010 | Operational |



## LAMP, Lyman alpha telescope **DIVINER**, thermal radiometer **CRATER**, cosmic ray detector

## **SUMMARY OF LRO-LR ACHIEVEMENTS**

- Enabled a new range measurement capability using existing SLR infrastructures, complementing and potentially replacing RF tracking in the future.
- Demonstrated operational laser ranging to a target orbiting a body other than Earth over a 5 year period.
- Showed that the ILRS Network can be coordinated to provide close to 24 hour coverage for laser ranging to targets beyond the Earth's orbit.
- Developed & demonstrated a successful method for providing tracking feedback to ground stations for 1-way uplink ranging (real-time website from instrument housekeeping data).

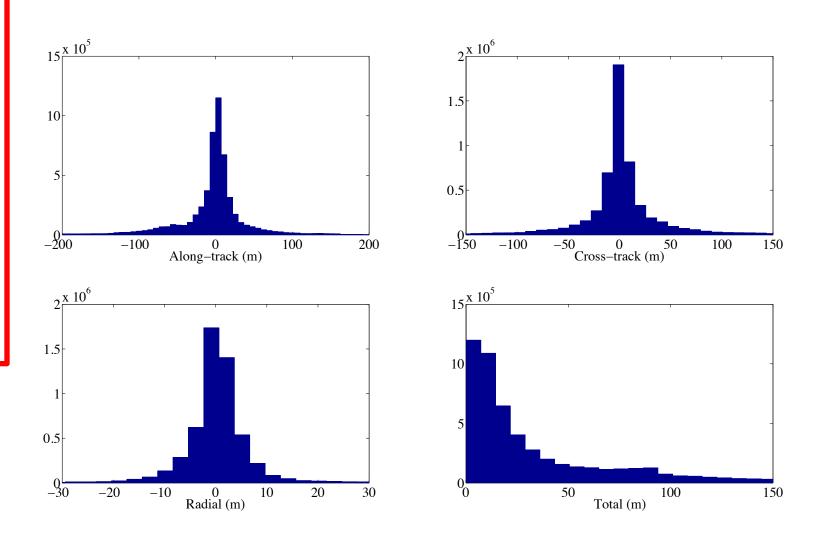


Newtonian light time residuals of the LRO USO (clock drift and aging removed) are less than 15 microseconds over the entire 5-year of LR operation. This plot shows that LR data provides much more accurate USO knowledge than the LRO mission requirement of 3 ms.

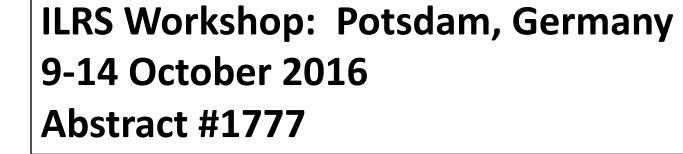
## **LRO USO characterization:**

Method 1: direct estimation from NGSLR data (blue)

Method 2: GEODYN estimation for each 2-week arc with LR data from all available stations (red). This plot shows that when NGSLR data is not available, data from other participating SLR stations provides a good supplement for LRO clock estimation.


LR + S-band provides improved radial orbit results

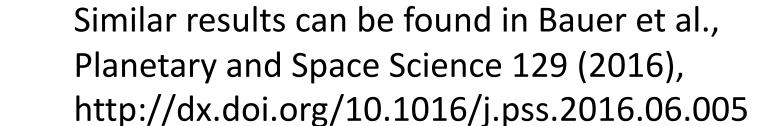
- Exceeded the Mission requirements for characterization of the LRO onboard oscillator.
- Demonstrated that LR data alone can be used to provide good orbit reconstruction. In addition, showed that combining LR and S-band data yield great improvement from S-band only results in the radial direction.
- Provided the opportunity to test new space technologies and mission concepts (laser com & time transfer) using established SLR infrastructures.


Mean values and RMS of the orbit difference between solutions for 2-week arcs (high resolution GRAIL gravity model) and definitive LRO orbits from the LOLA team

| Orbital<br>Difference | Average<br>Along-<br>track (m) | Average<br>Cross-<br>track (m) | Average<br>Radial<br>(m) | Average<br>total (m) | RMS<br>Along-<br>track (m) | RMS<br>Cross-<br>track (m) | RMS<br>Radial<br>(m) | RMS<br>Total (m) |
|-----------------------|--------------------------------|--------------------------------|--------------------------|----------------------|----------------------------|----------------------------|----------------------|------------------|
| S-band data<br>only   | 3.876                          | -0.437                         | 0.653                    | 26.609               | 34.372                     | 30.705                     | 10.251               | 46.213           |
| LR data only          | -6.731                         | 1.826                          | 0.200                    | 53.065               | 78.325                     | 64.256                     | 21.669               | 100.989          |
| S-band & LR<br>data   | -3.070                         | 0.534                          | -0.143                   | 33.589               | 39.954                     | 34.522                     | 6.322                | 52.534           |

Ref: D. Mao et al., The laser ranging experiment of




Histogram of orbital difference: LR-only orbits vs. LRO definitive orbits (58 2-wk arcs over the entire 5-year operation). This histogram shows that LR data alone can provide good orbit determination results with a high-resolution gravity model (e.g. GRAIL gravity models).



the Lunar Reconnaissance Orbiter: Five years of

operations and data analysis, Icarus (2016),

http://dx.doi.org/10.1016/j.icarus.2016.07.003

