NASA will be performing network maintenance on Wednesday, November 20, 2024, between 11:00 AM EST and 1:00 PM EST (16:00 to 18:00 UTC). There will be two periods of about five minutes of disruption. During these peroids, the ILRS website will be unavailable during the outages. If you experience problems outside this window, contact support-cddis@nasa.gov.

close window

SLR Related Publications for 2019


Abbondanza C., Chin T.M., Gross R.S., Heflin M.B., Parker J.W., Soja B.S., Wu X. (2019). "A sequential estimation approach to terrestrial reference frame determination", Adv. Space Res., 65(4), 1235-1249, DOI: 10.1016/j.asr.2019.11.016

Arnold, D., Montenbruck, O., Hackel, S., Sośnica, K., Satellite laser ranging to low Earth orbiters: orbit and network validation (2019) Journal of Geodesy, 93, 2315–2334. DOI: 10.1007/s00190-018-1140-4

Bartels N., Allenspacher P., Bauer S., et al. (2019). "Design and qualification of a recessed satellite cornercube retroreflector for ground-based attitude verification via satellite laser ranging". CEAS Space Journal, 11, 391–403, doi:10.1007/s12567-019-00255-x.

Bauer S. & Steinborn J. (2019). "Time bias service: analysis and monitoring of satellite orbit prediction quality". J. Geodesy, 93, 2367–2377, doi:10.1007/s00190-019-01304-3.

Bury, G., Sośnica, K., Zajdel, R., Multi-GNSS orbit determination using satellite laser ranging, (2019) Journal of Geodesy, pp. 1-17. Article in Press, DOI: 10.1007/s00190-018-1143-1

Bury, G., Sośnica, K., Zajdel, R., Impact of the Atmospheric Non-tidal Pressure Loading on Global Geodetic Parameters Based on Satellite Laser Ranging to GNSS (2019) IEEE Transactions on Geoscience and Remote Sensing, Article in Press, DOI: 10.1109/TGRS.2018.2885845

Bury, G., Zajdel, R., Sośnica, K., Accounting for perturbing forces acting on Galileo using a box-wing model (2019) GPS Solutions. Article in Press, DOI: 0.1007/s10291-019-0860-0

Ciufolini, I., R. Matzner, A. Paolozzi, E. C. Pavlis, G. Sindoni, J. Ries, V. Gurzadyan, and R. Koenig. 2019. "Satellite Laser-Ranging as a Probe of Fundamental Physics." Scientific Reports. 9 (1): 15881. doi: 10.1038/s41598-019-52183-9

Ciufolini, I., A. Paolozzi, E. C. Pavlis, G. Sindoni, J. Ries, R. Matzner, R. Koenig, C. Paris, V. Gurzadyan, and R. Penrose. 2019. "An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites." The European Physical Journal C. 79 (10): 872. doi: 10.1140/epjc/s10052-019-7386-z

Cordelli E., Lauber P., Prohaska M., et al. (2019). "Recent developments at the Swiss optical ground station and geodynamics observatory Zimmerwald", Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019. (URL: https://conference.sdo.esoc.esa.int/proceedings/neosst1/paper/428/NEOSST1-paper428.pdf)

Couhert, Alexandre (2019). "Amélioration des références massiques de la Terre par synergie entre différentes mesures de géodésie spatiale. Application à l'océanographie par altimétrie spatiale", Ph.d Thesis, Université Paul Sabatier, Toulouse, France. URL: https://theses.hal.science/tel-02930229v1

Delva P., Puchades N., Schönemann E., et al. (2019). "A new test of gravitational redshift using Galileo satellites: The GREAT experiment (Un nouveau test de décalage gravitationnel vers le rouge á l'aide des satellites Galileo: l'expérience GREAT)", Comptes Rendus Physique, 20(3), 176–182, URL: https://www.sciencedirect.com/science/article/pii/S1631070519300271

Dirkx D., Procházka I., Bauer S., et al. (2019). "Laser and radio tracking for planetary science missions—a comparison". J. Geodesy, 93, 2405–2420, doi:10.1007/s00190-018-1171-x.

Eckl J.J., Schreiber K.U., Schuler T. (2019). "Lunar laser ranging utilizing a highly efficient solid-state detector in the near-IR", in Quantum Optics and Photon Counting, ed. by I. Prochazka, R., Sobolewski, R.B. James, P. Domokos, & A. Gali, Proceedings of SPIE, Volume 11027, UNSP 1102708, DOI: 10.1117/12.2521133.

Exertier P., Belli A., Samain E., et al. (2019). "Time and laser ranging: a window of opportunity for geodesy, navigation, and metrology". J. Geodesy, 93, 2389–2404, doi: 10.1007/s00190-018-1173-8.

Fernández J., Peter H., Calero E.J., et al. (2019). "Sentinel-3A: Validation of Orbit Products at the Copernicus POD Service". In: Mertikas, S., Pail, R. (eds) Fiducial Reference Measurements for Altimetry. International Association of Geodesy Symposia, vol 150. Springer, Cham. doi:10.1007/1345_2019_64.

Glaser, S., König, R., Neumayer, K.H. et al., Future SLR station networks in the framework of simulated multi-technique terrestrial reference frames, J Geod (2019). https://doi.org/10.1007/s00190-019-01256-8

Glaser, S., König, R., Neumayer, K. H., Nilsson, T., Heinkelmann, R., Flechtner, F., Schuh, H., On the impact of local ties on the datum realization of global terrestrial reference frames, Journal of Geodesy, 2019, doi: https://doi.org/10.1007/s00190-018-1189-0.

Hampf D., Schafer E., Sproll F., et al. (2019). "Satellite laser ranging at 100 kHz pulse repetition rate". CEAS Space Journal, 11, 363–370, doi:10.1007/s12567-019-00247-x.

Hattori A., Otsubo T., (2019). Time-varying solar radiation pressure on Ajisai in comparison with LAGEOS satellites, Adv. Space. Res. 63, 63-72, doi:https://dx.doi.org/10.1016/j.asr.2018.08.010.

Kang. Z.G., Tapley B.D., Chen J.L., Ries J., Bettadpur S. (2019). "Geocenter motion time series derived from GRACE GPS and LAGEOS observations", J. Geodesy, 93(10), 1931-1942, DOI: 10.1007/s00190-019-01292-4.

 

Katsigianni, G., Loyer, S., Perosanz, F., Mercier, F., Zajdel, R., Sośnica, K., Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing, (2019) Advances in Space Research, 63 (9), pp. 2952-2963. DOI: 10.1016/j.asr.2018.08.035

Kehm A., Bloßfeld M., König P., Seitz F.: Future TRFs and GGOS – where to put the next SLR station? Advances in Geosciences, 50, 17-25, https://doi.org/10.5194/adgeo-50-17-2019, 2019 (Open Access).

Kloth A., Steinborn J., Schildknecht T.,Steindorfer M., Koidl F., and Kirchner G. (2019). "On the horizon: new ESA Laser Ranging Station (ELRS) with debris tracking capabilities", In: Proceedings of ESA NEO SST Conference. Darmstadt, Germany. 22 - 24 January 2019. (URL: https://conference.sdo.esoc.esa.int/proceedings/neosst1/paper/472/NEOSST1-paper472.pdf)

König, R., Glaser, S., Ciufolini, I., Paolozzi, A. (2019), Impacts of the LARES and LARES-2 Satellite Missions on the SLR Terrestrial Reference Frame. - In: Novák, P., Crespi, M., Sneeuw, N., Sansò, F. (Eds.), IX Hotine-Marussi Symposium on Mathematical Geodesy, (International Association of Geodesy Symposia ; 151), Cham : Springer International Publishing, 57-65. DOI: https://doi.org/10.1007/1345_2019_84

Kornev A., Balmashnov R., Kuchma I., & Davtian A. (2019). "High-Energy two-Colour Picosecond Nd:YAG Laser for Satellite Laser Ranging", 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Munich, Germany, 23-27 June 2019, URL: https://ieeexplore.ieee.org/document/8871673.

Kucharski, D., Kirchner, G., Bennett, J.C., Lachut, M., Sośnica, K., Koshkin, N., Shakun, L., Koidl, F., Steindorfer, M., Wang, P., Fan, C., Han, X., Grunwaldt, L., Wilkinson, M., Rodríguez, J., Bianco, G., Vespe, F., Catalán, M., Salmins, K., del Pino, J.R., Lim, H.-C., Park, E., Moore, C., Lejba, P., Suchodolski, T., Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging,(2017) Earth and Space Science, 4 (10), pp. 661-668. DOI: 10.1002/2017EA000329

Kucharski D., Kirchner G., Otsubo T., et al. (2019). Hypertemporal photometric measurement of spaceborne mirrors specular reflectivity for Laser Time Transfer link model. Advances in Space Research, 64(4), 957-963. https://doi.org/10.1016/j.asr.2019.05.030.

Liang Z., Dong X., Ibrahim M., et al. (2019). "Tracking the space debris from the Changchun Observatory". Astrophys Space Sci, 364, 201, doi:10.1007/s10509-019-3686-x.

Luceri V., Pirri M., Rodríguez J., Appleby G., Pavlis E. C., Müller H.: Systematic errors in SLR data and their impact on the ILRS products. Journal of Geodesy, 93, 2357-2366, https://doi.org/10.1007/s00190-019-01319-w, 2019.

Luchessi, D., Anselmo, L., Bassan, M., Magnafico, C., Pardini, C., Peron, R., Pucacco, G., Visco, M., General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives, Universe, 2019, DOI: https://doi.org/10.3390/universe5060141

McGarry J.F., Hoffman E.D., Degnan J.J., et al. (2019). "NASA's satellite laser ranging systems for the twenty-first century". J. Geodesy, 93, 2249–2262, doi:10.1007/s00190-018-1191-6.

Merkowitz S.M., Bolotin S., Elosegui P., et al. (2019). "Modernizing and expanding the NASA Space Geodesy Network to meet future geodetic requirements". J. Geodesy, 93, 2263–2273, doi:10.1007/s00190-018-1204-5.

Meyer, U., Sośnica, K., Arnold, D., Dahle, C., Thaller, D., Dach, R., Jäggi, A., SLR, GRACE and Swarm gravity field determination and combination, (2019) Remote Sensing, 11 (8), art. no. 956, DOI: 10.3390/rs11080927

Müller J., Murphy T.W., Schreiber U., et al. (2019). "Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science". J. Geodesy, 93, 2195–2210, doi:10.1007/s00190-019-01296-0.

Noll, C., Michael, P., The Crustal Dynamics Data Information System: NASA's Active Archive of Geodetic Observations Supporting Research in Understanding our Dynamic Earth (poster), presented at the 27th IUGG General Assembly, Montreal Canada, July 08-18, 2019.

Noll C.E., Ricklefs R., Horvath J., et al. (2019). "Information resources supporting scientific research for the international laser ranging service". J. Geodesy, 93, 2211–2225, doi:10.1007/s00190-018-1207-2.

Otsubo, T., Aoyama, Y., Hattori, A., Doi, K., Pearlman, M. R., Noll, C. E., The Final Frontier for Satellite Laser Ranging: Antarctica, presented at theThe Tenth Symposium on Polar Science, Tokyo, Japan, December 03-05, 2019.

Otsubo, T., Müller, H., Pavlis, E.C., Torrence, M.H., Thaller, D., Glotov, V.D., Wang, X., Sośnica, K., Meyer, U., Wilkinson, M.J., Rapid response quality control service for the laser ranging tracking network, (2019) Journal of Geodesy, 93, 2335–2344, DOI: 10.1007/s00190-018-1197-0

Panzetta F., Bloßfeld M., Erdogan E., et al. (2019). "Towards thermospheric density estimation from SLR observations of LEO satellites: a case study with ANDE-Pollux satellite". J. Geodesy, 93, 353–368, doi:10.1007/s00190-018-1165-8.

Paris C., Sindoni G. (2019). "Comparison of Optical Quality of Some Passive Laser Ranged Satellites", Proceedings of the 2019 Photonics and Electromagnetics Research Symposium, pp. Rome, Italy, June 17-20, 2019, pp. 3483-3489.

Pearlman, M., Arnold, D., Davis, M., Barlier Fl, Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E., Sośnica K., Laser geodetic satellites: a high-accuracy scientific tool, Journal of Geodesy, 2019, DOI: https://doi.org/10.1007/s00190-019-01228-y

Pearlman, M., Brachet G., Lefebvre M., Barlier F., Exertier P., The Smithsonian Astrophysical Observatory (SAO) and the Centre National d'Études Spatiales (CNES): contributions to the international laser ranging network, Journal of Geodesy, 2019, DOI: https://doi.org/10.1007/s00190-018-1209-0

Pearlman, M., Noll C., Pavlis E., Lemoine F., Combrink L., Degnan J., Kirchner G., Schreiber U., The ILRS: approaching twenty years and planning for the future, Journal of Geodesy, 2019, DOI: https://doi.org/10.1007/s00190-019-01241-1

Pearlman, M. et al., GGOS: Current Activities and Plans of the Bureau of Networks and Observations (poster) , presented at the EGU General Assembly, Vienna, Austria, April 07-12, 2019

Porcelli L., Tibuzzi M., Mondaini C., et al. (2019). "Optical-Performance Testing of the Laser RetroReflector for InSight", Space Sci. Reviews, 215(1),1, DOI: 10.1007/s11214-018-0569-3

Psiaki M.L. (2019). "Laser Ranging to Unknown Objects for Initial Orbit Determination: A Feasibility Study", J. Guidance Control & Dynamics, 42(12), 2576–2589, doi:10.2514/1.G004293

Ratcliff J.T., Gross R.S. (2019). "Combinations of Earth Orientation Measurements: SPACE2018, COMB2018, and POLE2018", JPL Publication, 19-7, Jet Propulsion Laboratory, Pasadena, California, U.S.A.

Riepl S., Müller H., Mähler S., et al. (2019) "Operating two SLR systems at the Geodetic Observatory Wettzell: from local survey to space ties". J. Geodesy, 93, 2379–2387, doi:10.1007/s00190-019-01243-z.

Rodriguez, J., Appleby, G., Otsubo, T. (2019). "Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame", J. Geodesy, 93(12), 2553-2568, DOI: 10.1007/s00190-019-01315-0.

Rudenko S., Esselborn S., Schöne T. , Dettmering D., Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014, Solid Earth, 10(1), 293-305, https://doi.org/10.5194/se-10-293-2019, 2019.

Setty S.J., Flohrer T., and Krag H. (2019). "SLR for SST: an analysis on requirements and achievable orbit improvement", Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019. (URL: https://conference.sdo.esoc.esa.int/proceedings/neosst1/paper/116)

Sokolov, A.L., Akentyev, A.S., Vasiliev, V.P. et al., Version of a glass retroreflector satellite with a submillimeter "target error", J Geod (2019). https://doi.org/10.1007/s00190-019-01260-y

Sośnica, K., Bury, G., Zajdel, R., Strugarek, D., Drożdżewski, M., Kazmierski, K., Estimating global geodetic parameters using SLR observations to Galileo, GLONASS, BeiDou, GPS, and QZSS,(2019) Earth, Planets and Space, 71 (1), art. no. 20, DOI: 10.1186/s40623-019-1000-3

Steindorfer M., Kirchner G., Koidl F., Wang P. and Kucharski D. (2019). "Recent space debris related activities at the SLR station Graz", Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 January 2019. (URL: https://conference.sdo.esoc.esa.int/proceedings/neosst1/paper/451)

Steindorfer M.A., Kircher G., Koidl F., Wang P.Y., Wirnsberger H., Schoenemann E., Gonzalez F. (2019). "Attitude determination of Galileo satellites using high-resolution kHz SLR", J. Geodesy, 93(10), 1845-1851, DOI: 10.1007/s00190-019-01284-4.

Strugarek, D., Sośnica, K., Arnold D., Jäggi A., Zajdel R., Bury G., Drozdzewski M. (2019). "Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites", Remote Sensing, 11(19), 2282, DOI: 10.3390/rs11192282.

Strugarek, D., Sośnica, K., Jäggi, A., Characteristics of GOCE orbits based on Satellite Laser Ranging, (2019) Advances in Space Research, 63 (1), pp. 417-431. DOI: 10.1016/j.asr.2018.08.033

Varghese T., Ricklefs R.L., Pavlis E.C, et al. (2019). "Transitioning the NASA SLR network to Event Timing Mode for reduced systematics, improved stability and data precision". J. Geodesy, 93, 2345–2355, doi:10.1007/s00190-019-01326-x.

Viswanathan V., Mazarico E., Goossens S.J., Bertone S. (2019). "On the GRAIL-LLR low-degree gravity field inconsistencies", Poster G31-0649 presented at the 2019 Fall Meeting of the American Geophysical Union, San Francisco, CA, 9-13 Dec., 2019. URL: https://ntrs.nasa.gov/citations/20190034149

Wilkinson M., Schreiber U., Procházka I., et al. (2019). "The next generation of satellite laser ranging systems", J. Geodesy, 93, 2227–2247, doi:10.1007/s00190-018-1196-1.

Zajdel, R., Sośnica, K., Dach, R., Prange L., Bury, G., Jäggi, A., Network effects and handling of the geocenter motion in multi‐GNSS processing, (2019) Journal of Geophysical Research: Solid Earth, 124. DOI: 10.1029/2019JB017443