NASA will be performing network maintenance on Wednesday, November 20, 2024, between 11:00 AM EST and 1:00 PM EST (16:00 to 18:00 UTC). There will be two periods of about five minutes of disruption. During these peroids, the ILRS website will be unavailable during the outages. If you experience problems outside this window, contact support-cddis@nasa.gov.

close window
general navigation structure general satellite info ilrs support retroreflector info center of mass site performance info

CryoSat

Jump to: Mission Objectives, Mission Instrumentation, Mission Parameters, Additional Information

Mission Photos:

CryoSat
Courtesy of ESA

Mission Objectives:

A mission to measure change in the cryosphere, CryoSat-2 will measure the thickness of sea-ice and the surface elevation of ice sheets in both Northern and Southern hemispheres. For this, it uses an advanced radar altimeter combined with Precise Orbit Determination.

As the mission is intended to measure small secular change in a measure of distance it is necessary to use laser ranging for:

  • calibration of the altimeter and
  • support to the POD

The latter will primarily be performed with DORIS, but the SLR measurements will provide an essential independent tracking data type.

Unfortunately, the CryoSat-1 satellite was lost due to a launch failure on October 8, 2005 (ESA news release). CryoSat-2, identical to CryoSat-1, launched successfully on April 8, 2010 (ESA news release).

Mission Instrumentation:

CryoSat will have the following instrumentation onboard:

  • SAR/Inteferometric Radar Altimeter (SIRAL)
  • DORIS receiver
  • Retroreflector array
  • Three star trackers
Mission Parameters:
Satellite: CryoSat-1 CryoSat-2
Sponsor: ESA ESA
Expected Life: 3 years 3 years
Primary Applications: measure ice thickness measure ice thickness
Primary SLR Applications: precision orbit determination precision orbit determination
COSPAR ID: N/A 1001301
SIC Code: N/A 8006
Satellite Catalog (NORAD) Number: N/A 36508
Launch Date: October 8, 2005 April 08, 2010
NP Bin Size: 15 seconds 15 seconds
RRA Diameter: 16 cm 16 cm
RRA Shape: hemispherical hemispherical
Reflectors: 7 corner cubes (Meteor design) 7 corner cubes (Meteor design)
Orbit: circular, non sun-synchronous circular, non sun-synchronous
Inclination: 92 degrees 92 degrees
Eccentricity: 0.0 0.0
Altitude: ~720 km ~720 km
Weight: 711 kg 711 kg

Additional Information:
Cryosat Press Releases:
Cryosat-2 science & spacecraft-related videos:
Web sites:
Publications:
  • General mission reference:
    • Parrinello T., Shepherd A., Bouffard J. et al.. (2018). “CryoSat: ESA’s ice mission – Eight years in space”, Adv. Space Res., 62(6), 1178–1190, doi: 10.1016/j.asr.2018.04.014
  • SLR and POD-related papers:
    • Moyard J., Couhert A., Mercier F. et al. (2019). "CNES POE-F precise orbit performances for the current altimeter missions", Presentation at the 2019 Ocean Surface Topography Science Team (OSTST) Meeting, Chicago, Illinois, Oct. 21–25, 2019
    • Rudenko, S., Dettmerring D., Bloßfeld M. et al. (2023). "Radial orbit errors of altimetry satellites", Surveys in Geophysics, 44(3), 705–737, doi: 10.1007/s10712-022-09758-5
    • Schrama E.J.O. and Visser P. (2022). "Orbit accuracy on the 12th anniversary of the Cryosat-2 mission", presentation at the 2022 International DORIS Service (IDS) Workshop, Oct. 31 – Nov. 2, 2022, Venice, Italy, doi:10.2440/312072/i03-2022.3313
    • Schrama E.J.O. (2018). "Precision orbit determination for CryoSat-2", Adv. Space Res., 61(1), 235–247, doi: 10.1016/j.asr.2017.11.001
  • Selected Cryosat-2 Science-related papers:
    • Cryosphere:
      • Jakob L., Gourmelen N. (2023). "Glacier mass loss between 2010 and 2020 dominated by atmospheric forcing", Geophys. Res. Lett., 50(8), e2023GL102954, doi: 10.1029/2023GL102954
      • Jakob L., Gourmelen N., Ewart M., Plummer S. (2021). "Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019", Cryosphere, 15(4), 1845–1862, doi: 10.5194/tc-15-1845-2021
      • Liu S.W., Jiang J.H., Sun Q.T. et al. (2023). "Assessment of the Greenland ice sheet change (2011-2021) from CryoSat-2", Polar Science, 36, doi: 10.1016/j.polar.2023.100940
      • Nilsson J., Gardner A.S., Paolo F.S. (2022). "Elevation change of the Antarctic Ice Sheet: 1985 to 2020", Earth System Science Data, 14(8), 3573–3598, doi: 10.5194/essd-14-3573-2022
      • Schröder L., Horwath M., Dietrich R. et al. (2019). "Four decades of Antarctic elevation changes from multi-mission satellite altimetry", Cryosphere, 13(2), 427–449, doi: 10.5194/tc-13-427-2019
      • Zhang B.J., Wang Z.M., Yang Q.M. et al. (2020). "Elevation changes of the Antarctic ice sheet from joint Envisat and CryoSat-2 radar altimetry", Remote Sensing, 12(22), doi: 10.3390/rs12223746
    • Sea ice thickness & mapping:
      • Dawson G., Landy J., Tsamados M. et al. (2022). "A 10-year record of Arctic summer sea ice freeboard from CryoSat-2", Remote Sensing of Environment, 268, doi: 10.1016/j.rse.2021.112744
      • Meier W.N and Stroeve J. (2022). "An assessment of the changing arctic sea ice cover", Oceanography, 35(3-4), doi: 10.5670/oceanog.2022.114
    • Bathymetry & gravity mapping:
      • Bergé-Nguyen M., Crétaux J.F., Calmant S. et al. (2021). "Mapping mean lake surface from satellite altimetry and GPS kinematic surveys", Adv. Space Res., 67(3), doi: 10.1016/j.asr.2020.11.001
      • Gevorgian J., Sandwell D.T., Yu Y. et al. (2023). "Global distribution and morphology of small seamounts", Earth and Space Science, 10(4), doi: 10.1029/2022EA002331
      • Sandwell, D.T., Harper H., Tozer B., Smith W.H.F. (2021). "Gravity field from geodetic altimeter missions", Adv. Space Res., 68(2), doi: 10.1016/j.asr.2019.09.011
      • Sandwell D.T., Müller R.D., Smith W.H.F. et al. (2014). "New marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure", Science, 346(6205), 65–67, doi: 10.1126/science.1258213
      • Tozer B., Sandwell D.T., Smith W.H.F. et al. (2019). "Global bathymetry and Topography at 15 Arc Sec: SRTM15+", Earth and Space Science, 6(10), 1847–1864, doi: 10.1029/2019EA000658
    • Ocean products:
      • Andersen O.B. Rose S.K., Abulaitijiang A. et al. (2023). "The DTU21 global mean sea surface and first evaluation", Earth System Science Data, 15(9), 4065–4075, doi: 10.5194/essd-15-4065-2023
      • Banks C.J., Calafat F.M., Shaw A.G.P., et al. (2023). "A new daily quarter degree sea level anomaly product from CryoSat-2 for ocean science and applications", Scientific Data, 10(1), doi: 10.1038/s41597-023-02300-1
      • Naeije M., Bouffard J. (2021). "Long-term quality and stability assessment of CryoSat-2 Ocean Data", Adv. Space Res., 68(2), 1194–1215, doi: 10.1016/j.asr.2019.08.039
      • Prandi P., Poisson J-C., Faugère Y. et al. (2021). "Arctic sea surface height maps from multi-altimeter combination", Earth System Science Data, 13(12), 5469–2021, doi: 10.5194/essd-13-5469-2021
    • Ocean tide modelling:
      • Andersen O.B., Rose S.K., Hart-Davis M.G. (2023). "Polar ocean tides – revisited using CryoSat-2", Remote Sensing, 15(18), doi: 10.3390/rs15184479
      • Ray R.D. and Zaron E. (2016). "M2 internal tides and their observed wavenumber spectra from satellite altimetry", J. Physical Oceanography, 46(1), 3–22, doi: 10.1175/JPO-D-15-0065.1
      • Zaron E. (2019). "Simultaneous estimation of ocean tides and underwater topography in the Weddel Sea", J. Geophys. Res.-Oceans, 124(5), 3125–3148, doi: 10.1029/2019JC015037
    • Global & regional mean sea level change:
      • Rose S.K., Andersen O.B., Passoro M. et al. (2019). "Arctic ocean sea level record from the complete altimetry era: 1991–2018", Remote Sensing, 11(14), doi: 10.3390/rs11141672
      • Veng T and Andersen O.B. (2021). "Consolidating sea level acceleration estimates from satellite altimetry", Adv. Space Res., 68(2), 496–503, doi: 10.1016/j.asr.2020.01.016
    • Terrestrial Reference Frame:
      • Moreaux G., Lemoine F.G., Capdeville H. et al. (2023). "The International DORIS Service contribution to ITRF2020", Adv. Space Res., 72(1), 65–91, doi: 10.1016/j.asr.2022.07.012
      • Moreaux G., Lemoine F.G., Zelensky N.P. et al. (2023). "DPOD2020: A DORIS extension of the ITRF2020 for precise orbit determination", Adv. Space Res., 72(11), 4625–4650, doi: 10.1016/j.asr.2023.10.006